import torch from transformers import pipeline translator = pipeline("automatic-speech-recognition", "facebook/seamless-m4t-v2-large", torch_dtype=torch.float32, device="cpu") converter = pipeline("translation", "facebook/seamless-m4t-v2-large", torch_dtype=torch.float32, device="cpu") asr_text = translator("https://huggingface.co/datasets/reach-vb/random-audios/resolve/main/ted_60.wav", chunk_length_s=30, generate_kwargs={"tgt_lang": "eng"}) print(asr_text) # print(translator("https://huggingface.co/datasets/reach-vb/random-audios/resolve/main/ted_60.wav", # chunk_length_s=30, # generate_kwargs={"tgt_lang": "fra"})) # print(translator("https://huggingface.co/datasets/reach-vb/random-audios/resolve/main/ted_60.wav", # chunk_length_s=30, # generate_kwargs={"tgt_lang": "ita"})) # print(translator("https://huggingface.co/datasets/reach-vb/random-audios/resolve/main/ted_60.wav", # chunk_length_s=30, # generate_kwargs={"tgt_lang": "spa"})) print(converter(asr_text['text'], src_lang="eng", tgt_lang="spa") )