# 1. Imports and class names import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict # Set up class names with open("class_names.txt", "r") as f: class_names = [food_name.strip() for food_name in f.readlines()] # 2. Model and transforms preparations # Create model effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101) # Load saved weights effnetb2.load_state_dict( torch.load( f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", map_location=torch.device("cpu") # load to CPU ) ) # 3. Predict function # Create predict function def prdict(img) -> Tuple[Dict, float]: """ Transforms and performs a prediction on img and returns predictions and time per prediction """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = effnetb2_transforms(img).unsqueeze(0) # Put the model into evaluation mode and turn on inference mode effnetb2.eval() with torch.inference_mode(): # Pass the transformed iamge through the model and turn the prediction logits into prediction probablities pred_probs = torch.softmax(effnetb2(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (required format for Gradio) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate prediction time pred_time = round(timer() - start_time, 5) # 4. Gradio app # Create title, description and article strings title = "FoodVision Big" description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)." article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/) course." # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(type='pil'), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)") ], examples=example_list, title=title, description=description, article=article ) # Launch the app demo.launch()