"""Streamlit app for Presidio.""" import json from json import JSONEncoder from annotated_text import annotated_text import pandas as pd import streamlit as st from presidio_analyzer import AnalyzerEngine, RecognizerRegistry from presidio_anonymizer import AnonymizerEngine from flair_recognizer import FlairRecognizer import spacy # spacy.cli.download("en_core_web_lg") # Helper methods @st.cache(allow_output_mutation=True) def analyzer_engine(): """Return AnalyzerEngine.""" flair_recognizer = FlairRecognizer() registry = RecognizerRegistry() registry.add_recognizer(flair_recognizer) registry.load_predefined_recognizers() registry.remove_recognizer("SpacyRecognizer") analyzer = AnalyzerEngine(registry=registry) return analyzer @st.cache(allow_output_mutation=True) def anonymizer_engine(): """Return AnonymizerEngine.""" return AnonymizerEngine() def get_supported_entities(): """Return supported entities from the Analyzer Engine.""" return analyzer_engine().get_supported_entities() def analyze(**kwargs): """Analyze input using Analyzer engine and input arguments (kwargs).""" if "entities" not in kwargs or "All" in kwargs["entities"]: kwargs["entities"] = None return analyzer_engine().analyze(**kwargs) def anonymize(text, analyze_results): """Anonymize identified input using Presidio Abonymizer.""" res = anonymizer_engine().anonymize(text, analyze_results) return res.text def annotate(text, st_analyze_results, st_entities): tokens = [] # sort by start index results = sorted(st_analyze_results, key=lambda x: x.start) for i, res in enumerate(results): if i == 0: tokens.append(text[:res.start]) # append entity text and entity type tokens.append((text[res.start: res.end], res.entity_type)) # if another entity coming i.e. we're not at the last results element, add text up to next entity if i != len(results) - 1: tokens.append(text[res.end:results[i+1].start]) # if no more entities coming, add all remaining text else: tokens.append(text[res.end:]) return tokens st.set_page_config(page_title="Presidio demo (English)", layout="wide") # Side bar st.sidebar.markdown( """ Detect and anonymize PII entities in text with a [PII detection model](https://huggingface.co/beki/flair-pii-english) trained on protocol trace data generated by [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and [presidio](https://aka.ms/presidio). """ ) st_entities = st.sidebar.multiselect( label="Which entities to look for?", options=get_supported_entities(), default=list(get_supported_entities()), ) st_threshold = st.sidebar.slider( label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35 ) st_return_decision_process = st.sidebar.checkbox("Add analysis explanations in json") st.sidebar.info( "Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. " "For more info visit [aka.ms/presidio](https://aka.ms/presidio) and [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy)" ) # Main panel analyzer_load_state = st.info("Starting Presidio analyzer and loading Privy-trained model...") engine = analyzer_engine() analyzer_load_state.empty() st_text = st.text_area( label="Type in some text", value= "{first_name: Willie Porter, ip_address: 192.168.2.80, email: willie@gmail.com}" "\n" "SELECT address FROM users WHERE address = '47 W 13th St, New York, NY 10011'", height=200, ) # After st.subheader("Analyzed") with st.spinner("Analyzing..."): st_analyze_results = analyze( text=st_text, entities=st_entities, language="en", score_threshold=st_threshold, return_decision_process=st_return_decision_process, ) annotated_tokens = annotate(st_text, st_analyze_results, st_entities) # annotated_tokens annotated_text(*annotated_tokens) # vertical space st.text("") st.subheader("Anonymized") with st.spinner("Anonymizing..."): st_anonymize_results = anonymize(st_text, st_analyze_results) st_anonymize_results # table result st.subheader("Detailed Findings") if st_analyze_results: res_dicts = [r.to_dict() for r in st_analyze_results] for d in res_dicts: d['Value'] = st_text[d['start']:d['end']] df = pd.DataFrame.from_records(res_dicts) df = df[["entity_type", "Value", "score", "start", "end"]].rename( { "entity_type": "Entity type", "start": "Start", "end": "End", "score": "Confidence", }, axis=1, ) st.dataframe(df, width=1000) else: st.text("No findings") # json result class ToDictListEncoder(JSONEncoder): """Encode dict to json.""" def default(self, o): """Encode to JSON using to_dict.""" if o: return o.to_dict() return [] if st_return_decision_process: st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))