import math import random import torch from basicsr.archs.arch_util import default_init_weights from basicsr.utils.registry import ARCH_REGISTRY from torch import nn from torch.nn import functional as F class NormStyleCode(nn.Module): def forward(self, x): """Normalize the style codes. Args: x (Tensor): Style codes with shape (b, c). Returns: Tensor: Normalized tensor. """ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) class ModulatedConv2d(nn.Module): """Modulated Conv2d used in StyleGAN2. There is no bias in ModulatedConv2d. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether to demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. eps (float): A value added to the denominator for numerical stability. Default: 1e-8. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, eps=1e-8): super(ModulatedConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.demodulate = demodulate self.sample_mode = sample_mode self.eps = eps # modulation inside each modulated conv self.modulation = nn.Linear(num_style_feat, in_channels, bias=True) # initialization default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear') self.weight = nn.Parameter( torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) / math.sqrt(in_channels * kernel_size**2)) self.padding = kernel_size // 2 def forward(self, x, style): """Forward function. Args: x (Tensor): Tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). Returns: Tensor: Modulated tensor after convolution. """ b, c, h, w = x.shape # c = c_in # weight modulation style = self.modulation(style).view(b, 1, c, 1, 1) # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) weight = self.weight * style # (b, c_out, c_in, k, k) if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) weight = weight * demod.view(b, self.out_channels, 1, 1, 1) weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) # upsample or downsample if necessary if self.sample_mode == 'upsample': x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False) elif self.sample_mode == 'downsample': x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False) b, c, h, w = x.shape x = x.view(1, b * c, h, w) # weight: (b*c_out, c_in, k, k), groups=b out = F.conv2d(x, weight, padding=self.padding, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) return out def __repr__(self): return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, ' f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})') class StyleConv(nn.Module): """Style conv used in StyleGAN2. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None): super(StyleConv, self).__init__() self.modulated_conv = ModulatedConv2d( in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode) self.weight = nn.Parameter(torch.zeros(1)) # for noise injection self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1)) self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x, style, noise=None): # modulate out = self.modulated_conv(x, style) * 2**0.5 # for conversion # noise injection if noise is None: b, _, h, w = out.shape noise = out.new_empty(b, 1, h, w).normal_() out = out + self.weight * noise # add bias out = out + self.bias # activation out = self.activate(out) return out class ToRGB(nn.Module): """To RGB (image space) from features. Args: in_channels (int): Channel number of input. num_style_feat (int): Channel number of style features. upsample (bool): Whether to upsample. Default: True. """ def __init__(self, in_channels, num_style_feat, upsample=True): super(ToRGB, self).__init__() self.upsample = upsample self.modulated_conv = ModulatedConv2d( in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, x, style, skip=None): """Forward function. Args: x (Tensor): Feature tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). skip (Tensor): Base/skip tensor. Default: None. Returns: Tensor: RGB images. """ out = self.modulated_conv(x, style) out = out + self.bias if skip is not None: if self.upsample: skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False) out = out + skip return out class ConstantInput(nn.Module): """Constant input. Args: num_channel (int): Channel number of constant input. size (int): Spatial size of constant input. """ def __init__(self, num_channel, size): super(ConstantInput, self).__init__() self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) def forward(self, batch): out = self.weight.repeat(batch, 1, 1, 1) return out @ARCH_REGISTRY.register() class StyleGAN2GeneratorClean(nn.Module): """Clean version of StyleGAN2 Generator. Args: out_size (int): The spatial size of outputs. num_style_feat (int): Channel number of style features. Default: 512. num_mlp (int): Layer number of MLP style layers. Default: 8. channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. narrow (float): Narrow ratio for channels. Default: 1.0. """ def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1): super(StyleGAN2GeneratorClean, self).__init__() # Style MLP layers self.num_style_feat = num_style_feat style_mlp_layers = [NormStyleCode()] for i in range(num_mlp): style_mlp_layers.extend( [nn.Linear(num_style_feat, num_style_feat, bias=True), nn.LeakyReLU(negative_slope=0.2, inplace=True)]) self.style_mlp = nn.Sequential(*style_mlp_layers) # initialization default_init_weights(self.style_mlp, scale=1, bias_fill=0, a=0.2, mode='fan_in', nonlinearity='leaky_relu') # channel list channels = { '4': int(512 * narrow), '8': int(512 * narrow), '16': int(512 * narrow), '32': int(512 * narrow), '64': int(256 * channel_multiplier * narrow), '128': int(128 * channel_multiplier * narrow), '256': int(64 * channel_multiplier * narrow), '512': int(32 * channel_multiplier * narrow), '1024': int(16 * channel_multiplier * narrow) } self.channels = channels self.constant_input = ConstantInput(channels['4'], size=4) self.style_conv1 = StyleConv( channels['4'], channels['4'], kernel_size=3, num_style_feat=num_style_feat, demodulate=True, sample_mode=None) self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False) self.log_size = int(math.log(out_size, 2)) self.num_layers = (self.log_size - 2) * 2 + 1 self.num_latent = self.log_size * 2 - 2 self.style_convs = nn.ModuleList() self.to_rgbs = nn.ModuleList() self.noises = nn.Module() in_channels = channels['4'] # noise for layer_idx in range(self.num_layers): resolution = 2**((layer_idx + 5) // 2) shape = [1, 1, resolution, resolution] self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape)) # style convs and to_rgbs for i in range(3, self.log_size + 1): out_channels = channels[f'{2**i}'] self.style_convs.append( StyleConv( in_channels, out_channels, kernel_size=3, num_style_feat=num_style_feat, demodulate=True, sample_mode='upsample')) self.style_convs.append( StyleConv( out_channels, out_channels, kernel_size=3, num_style_feat=num_style_feat, demodulate=True, sample_mode=None)) self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True)) in_channels = out_channels def make_noise(self): """Make noise for noise injection.""" device = self.constant_input.weight.device noises = [torch.randn(1, 1, 4, 4, device=device)] for i in range(3, self.log_size + 1): for _ in range(2): noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) return noises def get_latent(self, x): return self.style_mlp(x) def mean_latent(self, num_latent): latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device) latent = self.style_mlp(latent_in).mean(0, keepdim=True) return latent def forward(self, styles, input_is_latent=False, noise=None, randomize_noise=True, truncation=1, truncation_latent=None, inject_index=None, return_latents=False): """Forward function for StyleGAN2GeneratorClean. Args: styles (list[Tensor]): Sample codes of styles. input_is_latent (bool): Whether input is latent style. Default: False. noise (Tensor | None): Input noise or None. Default: None. randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. truncation (float): The truncation ratio. Default: 1. truncation_latent (Tensor | None): The truncation latent tensor. Default: None. inject_index (int | None): The injection index for mixing noise. Default: None. return_latents (bool): Whether to return style latents. Default: False. """ # style codes -> latents with Style MLP layer if not input_is_latent: styles = [self.style_mlp(s) for s in styles] # noises if noise is None: if randomize_noise: noise = [None] * self.num_layers # for each style conv layer else: # use the stored noise noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)] # style truncation if truncation < 1: style_truncation = [] for style in styles: style_truncation.append(truncation_latent + truncation * (style - truncation_latent)) styles = style_truncation # get style latents with injection if len(styles) == 1: inject_index = self.num_latent if styles[0].ndim < 3: # repeat latent code for all the layers latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) else: # used for encoder with different latent code for each layer latent = styles[0] elif len(styles) == 2: # mixing noises if inject_index is None: inject_index = random.randint(1, self.num_latent - 1) latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) latent = torch.cat([latent1, latent2], 1) # main generation out = self.constant_input(latent.shape[0]) out = self.style_conv1(out, latent[:, 0], noise=noise[0]) skip = self.to_rgb1(out, latent[:, 1]) i = 1 for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2], noise[2::2], self.to_rgbs): out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space i += 2 image = skip if return_latents: return image, latent else: return image, None