import spaces import argparse import os import time from os import path from safetensors.torch import load_file from huggingface_hub import hf_hub_download cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path import gradio as gr import torch from diffusers import FluxPipeline torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("bdsqlsz/Hyper-Flux1-dev", "Hyper-FLUX.1-dev-8steps-lora_rank1.safetensors")) pipe.fuse_lora(lora_scale=2.0) pipe.to(device="cuda", dtype=torch.bfloat16) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """

Hyper-FLUX-8steps-LoRA

AutoML team from ByteDance

""" ) with gr.Row(): with gr.Column(scale=3): with gr.Group(): prompt = gr.Textbox( label="Your Image Description", placeholder="E.g., A serene landscape with mountains and a lake at sunset", lines=3 ) with gr.Accordion("Advanced Settings", open=False): with gr.Group(): with gr.Row(): height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024) width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024) with gr.Row(): steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8) scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5) seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0) generate_btn = gr.Button("Generate Image", variant="primary", scale=1) with gr.Column(scale=4): output = gr.Image(label="Your Generated Image") gr.Markdown( """

How to Use

  1. Enter a detailed description of the image you want to create.
  2. Adjust advanced settings if desired (tap to expand).
  3. Tap "Generate Image" and wait for your creation!

Tip: Be specific in your description for best results!

""" ) @spaces.GPU def process_image(height, width, steps, scales, prompt, seed): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): return pipe( prompt=[prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] generate_btn.click( process_image, inputs=[height, width, steps, scales, prompt, seed], outputs=output ) if __name__ == "__main__": demo.launch()