import spaces import argparse import os import time from os import path from safetensors.torch import load_file from huggingface_hub import hf_hub_download cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path import gradio as gr import torch from diffusers import FluxPipeline torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) with gr.Blocks() as demo: with gr.Column(): with gr.Row(): with gr.Column(): num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True) height = gr.Number(label="Image Height", value=1024, interactive=True) width = gr.Number(label="Image Width", value=1024, interactive=True) # steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True) # eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True) prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True) seed = gr.Number(label="Seed", value=3413, interactive=True) btn = gr.Button(value="run") with gr.Column(): output = gr.Gallery(height=1024) @spaces.GPU def process_image(num_images, height, width, prompt, seed): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): return pipe( prompt=[prompt]*num_images, generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=8, guidance_scale=3.5, height=int(height), width=int(width) ).images reactive_controls = [num_images, height, width, prompt, seed] # for control in reactive_controls: # control.change(fn=process_image, inputs=reactive_controls, outputs=[output]) btn.click(process_image, inputs=reactive_controls, outputs=[output]) if __name__ == "__main__": demo.launch()