import os import gradio as gr from huggingface_hub import login from huggingface_hub import InferenceClient import spaces # Retrieve API key and authenticate api_key = os.getenv("LLAMA") login(api_key) # Initialize InferenceClient for the Llama model client = InferenceClient("meta-llama/Llama-3.1-70B-Instruct") @spaces.GPU def respond( message, history: list[dict], system_message, max_tokens, temperature, top_p, ): # Start with the system message messages = [{"role": "system", "content": system_message}] # Add the conversation history messages += history # Add the latest user message messages.append({"role": "user", "content": message}) response = "" # Send the conversation to the model and stream the response for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Initialize the Gradio ChatInterface with the new format demo = gr.ChatInterface( respond, type="messages", # Use the OpenAI-style format additional_inputs=[ gr.Textbox( value="You are a helpful Customer Support assistant that specializes in the low-code software company: 'Plant an App' and tech-related topics.", label="System message" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()