Spaces:
Runtime error
Runtime error
from typing import Literal, Optional | |
import yaml | |
from pydantic import BaseModel | |
import torch | |
from lora import TRAINING_METHODS | |
PRECISION_TYPES = Literal["fp32", "fp16", "bf16", "float32", "float16", "bfloat16"] | |
NETWORK_TYPES = Literal["lierla", "c3lier"] | |
class PretrainedModelConfig(BaseModel): | |
name_or_path: str | |
v2: bool = False | |
v_pred: bool = False | |
clip_skip: Optional[int] = None | |
class NetworkConfig(BaseModel): | |
type: NETWORK_TYPES = "lierla" | |
rank: int = 4 | |
alpha: float = 1.0 | |
training_method: TRAINING_METHODS = "full" | |
class TrainConfig(BaseModel): | |
precision: PRECISION_TYPES = "bfloat16" | |
noise_scheduler: Literal["ddim", "ddpm", "lms", "euler_a"] = "ddim" | |
iterations: int = 500 | |
lr: float = 1e-4 | |
optimizer: str = "adamw" | |
optimizer_args: str = "" | |
lr_scheduler: str = "constant" | |
max_denoising_steps: int = 50 | |
class SaveConfig(BaseModel): | |
name: str = "untitled" | |
path: str = "./output" | |
per_steps: int = 200 | |
precision: PRECISION_TYPES = "float32" | |
class LoggingConfig(BaseModel): | |
use_wandb: bool = False | |
verbose: bool = False | |
class OtherConfig(BaseModel): | |
use_xformers: bool = False | |
class RootConfig(BaseModel): | |
prompts_file: str | |
pretrained_model: PretrainedModelConfig | |
network: NetworkConfig | |
train: Optional[TrainConfig] | |
save: Optional[SaveConfig] | |
logging: Optional[LoggingConfig] | |
other: Optional[OtherConfig] | |
def parse_precision(precision: str) -> torch.dtype: | |
if precision == "fp32" or precision == "float32": | |
return torch.float32 | |
elif precision == "fp16" or precision == "float16": | |
return torch.float16 | |
elif precision == "bf16" or precision == "bfloat16": | |
return torch.bfloat16 | |
raise ValueError(f"Invalid precision type: {precision}") | |
def load_config_from_yaml(config_path: str) -> RootConfig: | |
with open(config_path, "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
root = RootConfig(**config) | |
if root.train is None: | |
root.train = TrainConfig() | |
if root.save is None: | |
root.save = SaveConfig() | |
if root.logging is None: | |
root.logging = LoggingConfig() | |
if root.other is None: | |
root.other = OtherConfig() | |
return root | |