Spaces:
Runtime error
Runtime error
from typing import Literal, Optional, Union, List | |
import yaml | |
from pathlib import Path | |
from pydantic import BaseModel, root_validator | |
import torch | |
import copy | |
ACTION_TYPES = Literal[ | |
"erase", | |
"enhance", | |
] | |
# XL ใฏไบ็จฎ้กๅฟ ่ฆใชใฎใง | |
class PromptEmbedsXL: | |
text_embeds: torch.FloatTensor | |
pooled_embeds: torch.FloatTensor | |
def __init__(self, *args) -> None: | |
self.text_embeds = args[0] | |
self.pooled_embeds = args[1] | |
# SDv1.x, SDv2.x ใฏ FloatTensorใXL ใฏ PromptEmbedsXL | |
PROMPT_EMBEDDING = Union[torch.FloatTensor, PromptEmbedsXL] | |
class PromptEmbedsCache: # ไฝฟใใพใใใใใฎใง | |
prompts: dict[str, PROMPT_EMBEDDING] = {} | |
def __setitem__(self, __name: str, __value: PROMPT_EMBEDDING) -> None: | |
self.prompts[__name] = __value | |
def __getitem__(self, __name: str) -> Optional[PROMPT_EMBEDDING]: | |
if __name in self.prompts: | |
return self.prompts[__name] | |
else: | |
return None | |
class PromptSettings(BaseModel): # yaml ใฎใใค | |
target: str | |
positive: str = None # if None, target will be used | |
unconditional: str = "" # default is "" | |
neutral: str = None # if None, unconditional will be used | |
action: ACTION_TYPES = "erase" # default is "erase" | |
guidance_scale: float = 1.0 # default is 1.0 | |
resolution: int = 512 # default is 512 | |
dynamic_resolution: bool = False # default is False | |
batch_size: int = 1 # default is 1 | |
dynamic_crops: bool = False # default is False. only used when model is XL | |
def fill_prompts(cls, values): | |
keys = values.keys() | |
if "target" not in keys: | |
raise ValueError("target must be specified") | |
if "positive" not in keys: | |
values["positive"] = values["target"] | |
if "unconditional" not in keys: | |
values["unconditional"] = "" | |
if "neutral" not in keys: | |
values["neutral"] = values["unconditional"] | |
return values | |
class PromptEmbedsPair: | |
target: PROMPT_EMBEDDING # not want to generate the concept | |
positive: PROMPT_EMBEDDING # generate the concept | |
unconditional: PROMPT_EMBEDDING # uncondition (default should be empty) | |
neutral: PROMPT_EMBEDDING # base condition (default should be empty) | |
guidance_scale: float | |
resolution: int | |
dynamic_resolution: bool | |
batch_size: int | |
dynamic_crops: bool | |
loss_fn: torch.nn.Module | |
action: ACTION_TYPES | |
def __init__( | |
self, | |
loss_fn: torch.nn.Module, | |
target: PROMPT_EMBEDDING, | |
positive: PROMPT_EMBEDDING, | |
unconditional: PROMPT_EMBEDDING, | |
neutral: PROMPT_EMBEDDING, | |
settings: PromptSettings, | |
) -> None: | |
self.loss_fn = loss_fn | |
self.target = target | |
self.positive = positive | |
self.unconditional = unconditional | |
self.neutral = neutral | |
self.guidance_scale = settings.guidance_scale | |
self.resolution = settings.resolution | |
self.dynamic_resolution = settings.dynamic_resolution | |
self.batch_size = settings.batch_size | |
self.dynamic_crops = settings.dynamic_crops | |
self.action = settings.action | |
def _erase( | |
self, | |
target_latents: torch.FloatTensor, # "van gogh" | |
positive_latents: torch.FloatTensor, # "van gogh" | |
unconditional_latents: torch.FloatTensor, # "" | |
neutral_latents: torch.FloatTensor, # "" | |
) -> torch.FloatTensor: | |
"""Target latents are going not to have the positive concept.""" | |
return self.loss_fn( | |
target_latents, | |
neutral_latents | |
- self.guidance_scale * (positive_latents - unconditional_latents) | |
) | |
def _enhance( | |
self, | |
target_latents: torch.FloatTensor, # "van gogh" | |
positive_latents: torch.FloatTensor, # "van gogh" | |
unconditional_latents: torch.FloatTensor, # "" | |
neutral_latents: torch.FloatTensor, # "" | |
): | |
"""Target latents are going to have the positive concept.""" | |
return self.loss_fn( | |
target_latents, | |
neutral_latents | |
+ self.guidance_scale * (positive_latents - unconditional_latents) | |
) | |
def loss( | |
self, | |
**kwargs, | |
): | |
if self.action == "erase": | |
return self._erase(**kwargs) | |
elif self.action == "enhance": | |
return self._enhance(**kwargs) | |
else: | |
raise ValueError("action must be erase or enhance") | |
def load_prompts_from_yaml(path, target, positive, negative, attributes = []): | |
with open(path, "r") as f: | |
prompts = yaml.safe_load(f) | |
new = [] | |
for prompt in prompts: | |
copy_ = copy.deepcopy(prompt) | |
copy_['target'] = target | |
copy_['positive'] = positive | |
copy_['neutral'] = target | |
copy_['unconditional'] = negative | |
new.append(copy_) | |
prompts = new | |
print(prompts) | |
if len(prompts) == 0: | |
raise ValueError("prompts file is empty") | |
if len(attributes)!=0: | |
newprompts = [] | |
for i in range(len(prompts)): | |
for att in attributes: | |
copy_ = copy.deepcopy(prompts[i]) | |
copy_['target'] = att + ' ' + copy_['target'] | |
copy_['positive'] = att + ' ' + copy_['positive'] | |
copy_['neutral'] = att + ' ' + copy_['neutral'] | |
copy_['unconditional'] = att + ' ' + copy_['unconditional'] | |
newprompts.append(copy_) | |
else: | |
newprompts = copy.deepcopy(prompts) | |
print(newprompts) | |
print(len(prompts), len(newprompts)) | |
prompt_settings = [PromptSettings(**prompt) for prompt in newprompts] | |
return prompt_settings | |