# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import torch
from torchvision import transforms as T
import gradio as gr
class App:
title = 'Scene Text Recognition with
Permuted Autoregressive Sequence Models'
models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr']
def __init__(self):
self._model_cache = {}
self._preprocess = T.Compose([
T.Resize((32, 128), T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(0.5, 0.5)
])
def _get_model(self, name):
if name in self._model_cache:
return self._model_cache[name]
model = torch.hub.load('baudm/parseq', name, pretrained=True, trust_repo=True).eval()
self._model_cache[name] = model
return model
@torch.inference_mode()
def __call__(self, model_name, image):
if image is None:
return '', []
if isinstance(image, dict): # Extact image from ImageEditor output
image = image['composite']
model = self._get_model(model_name)
image = self._preprocess(image.convert('RGB')).unsqueeze(0)
# Greedy decoding
pred = model(image).softmax(-1)
label, _ = model.tokenizer.decode(pred)
raw_label, raw_confidence = model.tokenizer.decode(pred, raw=True)
# Format confidence values
max_len = 25 if model_name == 'crnn' else len(label[0]) + 1
conf = list(map('{:0.1f}'.format, raw_confidence[0][:max_len].tolist()))
return label[0], [raw_label[0][:max_len], conf]
def main():
app = App()
with gr.Blocks(analytics_enabled=False, title=app.title.replace('
', ' ')) as demo:
gr.Markdown(f"""