"""A local gradio app that detects seizures with EEG using FHE.""" from PIL import Image import os import shutil import subprocess import time import gradio as gr import numpy import requests from itertools import chain from common import ( CLIENT_TMP_PATH, SERVER_TMP_PATH, EXAMPLES, INPUT_SHAPE, KEYS_PATH, REPO_DIR, SERVER_URL, ) from client_server_interface import FHEClient # Uncomment here to have both the server and client in the same terminal subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) time.sleep(3) def shorten_bytes_object(bytes_object, limit=500): """Shorten the input bytes object to a given length. Encrypted data is too large for displaying it in the browser using Gradio. This function provides a shorten representation of it. Args: bytes_object (bytes): The input to shorten limit (int): The length to consider. Default to 500. Returns: str: Hexadecimal string shorten representation of the input byte object. """ # Define a shift for better display shift = 100 return bytes_object[shift : limit + shift].hex() def get_client(user_id): """Get the client API. Args: user_id (int): The current user's ID. Returns: FHEClient: The client API. """ return FHEClient( key_dir=KEYS_PATH / f"seizure_detection_{user_id}" ) def get_client_file_path(name, user_id): """Get the correct temporary file path for the client. Args: name (str): The desired file name. user_id (int): The current user's ID. Returns: pathlib.Path: The file path. """ return CLIENT_TMP_PATH / f"{name}_seizure_detection_{user_id}" def clean_temporary_files(n_keys=20): """Clean keys and encrypted images. A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this limit is reached, the oldest files are deleted. Args: n_keys (int): The maximum number of keys and associated files to be stored. Default to 20. """ # Get the oldest key files in the key directory key_dirs = sorted(KEYS_PATH.iterdir(), key=os.path.getmtime) # If more than n_keys keys are found, remove the oldest user_ids = [] if len(key_dirs) > n_keys: n_keys_to_delete = len(key_dirs) - n_keys for key_dir in key_dirs[:n_keys_to_delete]: user_ids.append(key_dir.name) shutil.rmtree(key_dir) # Get all the encrypted objects in the temporary folder client_files = CLIENT_TMP_PATH.iterdir() server_files = SERVER_TMP_PATH.iterdir() # Delete all files related to the ids whose keys were deleted for file in chain(client_files, server_files): for user_id in user_ids: if user_id in file.name: file.unlink() def keygen(): """Generate the private key for seizure detection. Returns: (user_id, True) (Tuple[int, bool]): The current user's ID and a boolean used for visual display. """ # Clean temporary files clean_temporary_files() # Create an ID for the current user user_id = numpy.random.randint(0, 2**32) # Retrieve the client API client = get_client(user_id) # Generate a private key client.generate_private_and_evaluation_keys(force=True) # Retrieve the serialized evaluation key evaluation_key = client.get_serialized_evaluation_keys() # Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio # buttons (see https://github.com/gradio-app/gradio/issues/1877) evaluation_key_path = get_client_file_path("evaluation_key", user_id) with evaluation_key_path.open("wb") as evaluation_key_file: evaluation_key_file.write(evaluation_key) return (user_id, True) def encrypt(user_id, input_image): """Encrypt the given image for seizure detection. Args: user_id (int): The current user's ID. input_image (numpy.ndarray): The image to encrypt. Returns: (input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its representation. """ if user_id == "": raise gr.Error("Please generate the private key first.") if input_image is None: raise gr.Error("Please choose an image first.") # Resize the image if it hasn't the shape (224, 224, 3) if input_image.shape != (224, 224, 3): input_image_pil = Image.fromarray(input_image) input_image_pil = input_image_pil.resize((224, 224)) input_image = numpy.array(input_image_pil) # Convert RGB to grayscale input_image_gray = numpy.mean(input_image, axis=2).astype(numpy.uint8) # Reshape to (1, 1, 224, 224) input_image_reshaped = input_image_gray.reshape(1, 1, 224, 224) # Convert to int12 (assuming the range is 0-255, we can simply cast to int16) input_image_int12 = input_image_reshaped.astype(numpy.int16) # Retrieve the client API client = get_client(user_id) # Pre-process, encrypt and serialize the image encrypted_image = client.encrypt_serialize(input_image_int12) # Save encrypted_image to bytes in a file, since too large to pass through regular Gradio # buttons, https://github.com/gradio-app/gradio/issues/1877 encrypted_image_path = get_client_file_path("encrypted_image", user_id) with encrypted_image_path.open("wb") as encrypted_image_file: encrypted_image_file.write(encrypted_image) # Create a truncated version of the encrypted image for display encrypted_image_short = shorten_bytes_object(encrypted_image) return (resize_img(input_image), encrypted_image_short) def send_input(user_id): """Send the encrypted input image as well as the evaluation key to the server. Args: user_id (int): The current user's ID. """ # Get the evaluation key path evaluation_key_path = get_client_file_path("evaluation_key", user_id) if user_id == "" or not evaluation_key_path.is_file(): raise gr.Error("Please generate the private key first.") encrypted_input_path = get_client_file_path("encrypted_image", user_id) if not encrypted_input_path.is_file(): raise gr.Error("Please generate the private key and then encrypt an image first.") # Define the data and files to post data = { "user_id": user_id, } files = [ ("files", open(encrypted_input_path, "rb")), ("files", open(evaluation_key_path, "rb")), ] # Send the encrypted input image and evaluation key to the server url = SERVER_URL + "send_input" with requests.post( url=url, data=data, files=files, ) as response: return response.ok def run_fhe(user_id): """Apply the seizure detection model on the encrypted image previously sent using FHE.""" data = {"user_id": user_id} url = SERVER_URL + "run_fhe" try: with requests.post(url=url, data=data, timeout=120) as response: response.raise_for_status() # Raises an HTTPError for bad responses if response.ok: return response.json() else: raise gr.Error(f"Server responded with status code {response.status_code}") except requests.exceptions.Timeout: raise gr.Error("The request timed out. The server might be overloaded.") except requests.exceptions.ConnectionError: raise gr.Error("Failed to connect to the server. Please check your network connection.") except requests.exceptions.RequestException as e: raise gr.Error(f"An error occurred: {str(e)}") except Exception as e: raise gr.Error(f"An unexpected error occurred: {str(e)}") def get_output(user_id): """Retrieve the encrypted output (boolean). Args: user_id (int): The current user's ID. Returns: encrypted_output_short (bytes): A representation of the encrypted result. """ data = { "user_id": user_id, } # Retrieve the encrypted output url = SERVER_URL + "get_output" with requests.post( url=url, data=data, ) as response: if response.ok: encrypted_output = response.content # Save the encrypted output to bytes in a file as it is too large to pass through regular # Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877) encrypted_output_path = get_client_file_path("encrypted_output", user_id) with encrypted_output_path.open("wb") as encrypted_output_file: encrypted_output_file.write(encrypted_output) # Create a truncated version of the encrypted output for display encrypted_output_short = shorten_bytes_object(encrypted_output) return encrypted_output_short else: raise gr.Error("Please wait for the FHE execution to be completed.") def decrypt_output(user_id): """Decrypt the result. Args: user_id (int): The current user's ID. Returns: bool: The decrypted output (True if seizure detected, False otherwise) """ if user_id == "": raise gr.Error("Please generate the private key first.") # Get the encrypted output path encrypted_output_path = get_client_file_path("encrypted_output", user_id) if not encrypted_output_path.is_file(): raise gr.Error("Please run the FHE execution first.") # Load the encrypted output as bytes with encrypted_output_path.open("rb") as encrypted_output_file: encrypted_output = encrypted_output_file.read() # Retrieve the client API client = get_client(user_id) # Deserialize, decrypt and post-process the encrypted output decrypted_output = client.deserialize_decrypt_post_process(encrypted_output) return "Seizure detected" if decrypted_output else "No seizure detected" def resize_img(img, width=256, height=256): """Resize the image.""" if img.dtype != numpy.uint8: img = img.astype(numpy.uint8) img_pil = Image.fromarray(img) # Resize the image resized_img_pil = img_pil.resize((width, height)) # Convert back to a NumPy array return numpy.array(resized_img_pil) demo = gr.Blocks() print("Starting the demo...") with demo: gr.Markdown( """

Seizure Detection on Encrypted EEG Data Using Fully Homomorphic Encryption

""" ) gr.Markdown("## Client side") gr.Markdown("### Step 1: Upload an EEG image. ") gr.Markdown( f"The image will automatically be resized to shape (224x224). " "The image here, however, is displayed in its original resolution." ) with gr.Row(): input_image = gr.Image( value=None, label="Upload an EEG image here.", height=256, width=256, sources="upload", interactive=True, ) examples = gr.Examples( examples=EXAMPLES, inputs=[input_image], examples_per_page=5, label="Examples to use." ) gr.Markdown("### Step 2: Generate the private key.") keygen_button = gr.Button("Generate the private key.") with gr.Row(): keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False) user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False) gr.Markdown("### Step 3: Encrypt the image using FHE.") encrypt_button = gr.Button("Encrypt the image using FHE.") with gr.Row(): encrypted_input = gr.Textbox( label="Encrypted input representation:", max_lines=2, interactive=False ) gr.Markdown("## Server side") gr.Markdown( "The encrypted value is received by the server. The server can then compute the seizure " "detection directly over encrypted values. Once the computation is finished, the server returns " "the encrypted results to the client." ) gr.Markdown("### Step 4: Send the encrypted image to the server.") send_input_button = gr.Button("Send the encrypted image to the server.") send_input_checkbox = gr.Checkbox(label="Encrypted image sent.", interactive=False) gr.Markdown("### Step 5: Run FHE execution.") execute_fhe_button = gr.Button("Run FHE execution.") fhe_execution_time = gr.Textbox( label="Total FHE execution time (in seconds):", max_lines=1, interactive=False ) gr.Markdown("### Step 6: Receive the encrypted output from the server.") get_output_button = gr.Button("Receive the encrypted output from the server.") with gr.Row(): encrypted_output = gr.Textbox( label="Encrypted output representation:", max_lines=2, interactive=False ) gr.Markdown("## Client side") gr.Markdown( "The encrypted output is sent back to the client, who can finally decrypt it with the " "private key. Only the client is aware of the original image and the detection result." ) gr.Markdown("### Step 7: Decrypt the output.") decrypt_button = gr.Button("Decrypt the output") with gr.Row(): decrypted_output = gr.Textbox( label="Seizure detection result:", interactive=False ) # Button to generate the private key keygen_button.click( keygen, outputs=[user_id, keygen_checkbox], ) # Button to encrypt inputs on the client side encrypt_button.click( encrypt, inputs=[user_id, input_image], outputs=[input_image, encrypted_input], ) # Button to send the encodings to the server using post method send_input_button.click( send_input, inputs=[user_id], outputs=[send_input_checkbox] ) # Button to send the encodings to the server using post method execute_fhe_button.click(run_fhe, inputs=[user_id], outputs=[fhe_execution_time]) # Button to send the encodings to the server using post method get_output_button.click( get_output, inputs=[user_id], outputs=[encrypted_output] ) # Button to decrypt the output on the client side decrypt_button.click( decrypt_output, inputs=[user_id], outputs=[decrypted_output], ) gr.Markdown( "The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a " "Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). " "Try it yourself and don't forget to star on Github ⭐." ) demo.launch(share=False)