import logging import requests from requests.adapters import HTTPAdapter from urllib3.util import Retry from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint from langchain_core.language_models import LLM from global_config import GlobalConfig HF_API_URL = f"https://api-inference.huggingface.co/models/{GlobalConfig.HF_LLM_MODEL_NAME}" HF_API_HEADERS = {"Authorization": f"Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}"} logger = logging.getLogger(__name__) retries = Retry( total=5, backoff_factor=0.25, backoff_jitter=0.3, status_forcelist=[502, 503, 504], allowed_methods={'POST'}, ) adapter = HTTPAdapter(max_retries=retries) http_session = requests.Session() http_session.mount('https://', adapter) http_session.mount('http://', adapter) def get_hf_endpoint() -> LLM: """ Get an LLM via the HuggingFaceEndpoint of LangChain. :return: The LLM. """ logger.debug('Getting LLM via HF endpoint') return HuggingFaceEndpoint( repo_id=GlobalConfig.HF_LLM_MODEL_NAME, max_new_tokens=GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, top_k=40, top_p=0.95, temperature=GlobalConfig.LLM_MODEL_TEMPERATURE, repetition_penalty=1.03, streaming=True, huggingfacehub_api_token=GlobalConfig.HUGGINGFACEHUB_API_TOKEN, return_full_text=False, stop_sequences=[''], ) def hf_api_query(payload: dict) -> dict: """ Invoke HF inference end-point API. :param payload: The prompt for the LLM and related parameters. :return: The output from the LLM. """ try: response = http_session.post(HF_API_URL, headers=HF_API_HEADERS, json=payload, timeout=15) result = response.json() except requests.exceptions.Timeout as te: logger.error('*** Error: hf_api_query timeout! %s', str(te)) result = [] return result def generate_slides_content(topic: str) -> str: """ Generate the outline/contents of slides for a presentation on a given topic. :param topic: Topic on which slides are to be generated. :return: The content in JSON format. """ with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r', encoding='utf-8') as in_file: template_txt = in_file.read().strip() template_txt = template_txt.replace('', topic) output = hf_api_query({ 'inputs': template_txt, 'parameters': { 'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE, 'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH, 'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, 'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, 'num_return_sequences': 1, 'return_full_text': False, # "repetition_penalty": 0.0001 }, 'options': { 'wait_for_model': True, 'use_cache': True } }) output = output[0]['generated_text'].strip() # output = output[len(template_txt):] json_end_idx = output.rfind('```') if json_end_idx != -1: # logging.debug(f'{json_end_idx=}') output = output[:json_end_idx] logger.debug('generate_slides_content: output: %s', output) return output if __name__ == '__main__': # results = get_related_websites('5G AI WiFi 6') # # for a_result in results.results: # print(a_result.title, a_result.url, a_result.extract) # get_ai_image('A talk on AI, covering pros and cons') pass