from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 from global_config import GlobalConfig CHANNEL = ClarifaiChannel.get_grpc_channel() STUB = service_pb2_grpc.V2Stub(CHANNEL) METADATA = ( ('authorization', 'Key ' + GlobalConfig.CLARIFAI_PAT), ) USER_DATA_OBJECT = resources_pb2.UserAppIDSet( user_id=GlobalConfig.CLARIFAI_USER_ID, app_id=GlobalConfig.CLARIFAI_APP_ID ) RAW_TEXT = '''You are a helpful, intelligent chatbot. Create the slides for a presentation on the given topic. Include main headings for each slide, detailed bullet points for each slide. Add relevant content to each slide. Do not output any blank line. Topic: Talk about AI, covering what it is and how it works. Add its pros, cons, and future prospects. Also, cover its job prospects. ''' def get_text_from_llm(prompt: str) -> str: post_model_outputs_response = STUB.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=USER_DATA_OBJECT, # The userDataObject is created in the overview and is required when using a PAT model_id=GlobalConfig.CLARIFAI_MODEL_ID, # version_id=MODEL_VERSION_ID, # This is optional. Defaults to the latest model version inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=prompt ) ) ) ] ), metadata=METADATA ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: print(post_model_outputs_response.status) raise Exception(f"Post model outputs failed, status: {post_model_outputs_response.status.description}") # Since we have one input, one output will exist here output = post_model_outputs_response.outputs[0] # print("Completion:\n") # print(output.data.text.raw) return output.data.text.raw if __name__ == '__main__': topic = ('Talk about AI, covering what it is and how it works.' ' Add its pros, cons, and future prospects.' ' Also, cover its job prospects.' ) print(topic) with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file: prompt_txt = in_file.read() prompt_txt = prompt_txt.replace('{topic}', topic) response_txt = get_text_from_llm(prompt_txt) print('Output:\n', response_txt)