Spaces:
Running
Running
Add tests for icon embeddings
Browse files
tests/unit/test_icons_embeddings.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Unit tests for the icons embeddings module.
|
| 3 |
+
"""
|
| 4 |
+
import importlib
|
| 5 |
+
import sys
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from types import SimpleNamespace
|
| 8 |
+
from typing import Any, List
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def _reload_module_with_dummies(monkeypatch: Any, emb_dim: int = 4):
|
| 14 |
+
"""
|
| 15 |
+
Reload the icons_embeddings module after monkeypatching the
|
| 16 |
+
Transformers constructors to return lightweight dummy objects.
|
| 17 |
+
|
| 18 |
+
This prevents network/download or heavy model initialization during
|
| 19 |
+
tests and allows deterministic embeddings.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
monkeypatch: The pytest monkeypatch fixture.
|
| 23 |
+
emb_dim: The embedding dimensionality that the dummy model
|
| 24 |
+
should produce.
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
The reloaded module object.
|
| 28 |
+
"""
|
| 29 |
+
class DummyTokenizer:
|
| 30 |
+
def __call__(self, texts, return_tensors=None, padding=None,
|
| 31 |
+
max_length=None, truncation=None):
|
| 32 |
+
if isinstance(texts, str):
|
| 33 |
+
texts_list = [texts]
|
| 34 |
+
else:
|
| 35 |
+
texts_list = list(texts)
|
| 36 |
+
|
| 37 |
+
return {'texts': texts_list}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class DummyTensor:
|
| 41 |
+
def __init__(self, arr: np.ndarray) -> None:
|
| 42 |
+
self.arr = arr
|
| 43 |
+
|
| 44 |
+
def mean(self, dim: int) -> 'DummyTensor':
|
| 45 |
+
# Take numpy mean along the requested axis to emulate PyTorch.
|
| 46 |
+
return DummyTensor(self.arr.mean(axis=dim))
|
| 47 |
+
|
| 48 |
+
def detach(self) -> 'DummyTensor':
|
| 49 |
+
return self
|
| 50 |
+
|
| 51 |
+
def numpy(self) -> np.ndarray:
|
| 52 |
+
return self.arr
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class DummyModel:
|
| 56 |
+
def __call__(self, **inputs: Any) -> SimpleNamespace:
|
| 57 |
+
texts = inputs.get('texts', [])
|
| 58 |
+
n = len(texts)
|
| 59 |
+
seq_len = 3
|
| 60 |
+
arr = np.arange(n * seq_len * emb_dim, dtype=float)
|
| 61 |
+
arr = arr.reshape((n, seq_len, emb_dim))
|
| 62 |
+
return SimpleNamespace(last_hidden_state=DummyTensor(arr))
|
| 63 |
+
|
| 64 |
+
monkeypatch.setattr(
|
| 65 |
+
'transformers.BertTokenizer.from_pretrained',
|
| 66 |
+
lambda name: DummyTokenizer(),
|
| 67 |
+
)
|
| 68 |
+
monkeypatch.setattr(
|
| 69 |
+
'transformers.BertModel.from_pretrained',
|
| 70 |
+
lambda name: DummyModel(),
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
if 'slidedeckai.helpers.icons_embeddings' in sys.modules:
|
| 74 |
+
mod = importlib.reload(sys.modules['slidedeckai.helpers.icons_embeddings'])
|
| 75 |
+
else:
|
| 76 |
+
mod = importlib.import_module('slidedeckai.helpers.icons_embeddings')
|
| 77 |
+
|
| 78 |
+
return mod
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def test_get_icons_list(tmp_path: Path, monkeypatch: Any) -> None:
|
| 82 |
+
"""
|
| 83 |
+
get_icons_list should return the stems of PNG files in the
|
| 84 |
+
configured icons directory.
|
| 85 |
+
"""
|
| 86 |
+
mod = _reload_module_with_dummies(monkeypatch)
|
| 87 |
+
|
| 88 |
+
# Prepare a temporary icons directory with some files.
|
| 89 |
+
icons_dir = tmp_path / 'icons'
|
| 90 |
+
icons_dir.mkdir()
|
| 91 |
+
(icons_dir / 'apple.png').write_text('x')
|
| 92 |
+
(icons_dir / 'banana.png').write_text('y')
|
| 93 |
+
(icons_dir / 'not_an_icon.txt').write_text('z')
|
| 94 |
+
|
| 95 |
+
monkeypatch.setattr(mod.GlobalConfig, 'ICONS_DIR', icons_dir)
|
| 96 |
+
|
| 97 |
+
icons = mod.get_icons_list()
|
| 98 |
+
assert set(icons) == {'apple', 'banana'}
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def test_get_embeddings_single_and_list(monkeypatch: Any) -> None:
|
| 102 |
+
"""
|
| 103 |
+
get_embeddings must return numpy arrays with the expected shapes for
|
| 104 |
+
single string and list inputs.
|
| 105 |
+
"""
|
| 106 |
+
emb_dim = 5
|
| 107 |
+
mod = _reload_module_with_dummies(monkeypatch, emb_dim=emb_dim)
|
| 108 |
+
|
| 109 |
+
# Single string -> shape (1, emb_dim)
|
| 110 |
+
arr1 = mod.get_embeddings('hello')
|
| 111 |
+
assert isinstance(arr1, np.ndarray)
|
| 112 |
+
assert arr1.shape == (1, emb_dim)
|
| 113 |
+
|
| 114 |
+
# List of strings -> shape (3, emb_dim)
|
| 115 |
+
arr2 = mod.get_embeddings(['a', 'b', 'c'])
|
| 116 |
+
assert arr2.shape == (3, emb_dim)
|
| 117 |
+
|
| 118 |
+
# Verify determinism from our dummy model for the first row.
|
| 119 |
+
# The dummy model fills values with a range; mean over axis=1 reduces
|
| 120 |
+
# the seq_len dimension.
|
| 121 |
+
expected_first_row = np.arange(3 * emb_dim).reshape((3, emb_dim)).mean(axis=0)
|
| 122 |
+
assert np.allclose(arr2[0], expected_first_row)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def test_save_and_load_embeddings(tmp_path: Path, monkeypatch: Any) -> None:
|
| 126 |
+
"""
|
| 127 |
+
save_icons_embeddings should write embeddings and file names to the
|
| 128 |
+
configured paths and load_saved_embeddings should read them back.
|
| 129 |
+
"""
|
| 130 |
+
emb_dim = 6
|
| 131 |
+
mod = _reload_module_with_dummies(monkeypatch, emb_dim=emb_dim)
|
| 132 |
+
|
| 133 |
+
# Create icons dir with files.
|
| 134 |
+
icons_dir = tmp_path / 'icons2'
|
| 135 |
+
icons_dir.mkdir()
|
| 136 |
+
(icons_dir / 'one.png').write_text('1')
|
| 137 |
+
(icons_dir / 'two.png').write_text('2')
|
| 138 |
+
|
| 139 |
+
monkeypatch.setattr(mod.GlobalConfig, 'ICONS_DIR', icons_dir)
|
| 140 |
+
emb_file = tmp_path / 'emb.npy'
|
| 141 |
+
names_file = tmp_path / 'names.npy'
|
| 142 |
+
monkeypatch.setattr(mod.GlobalConfig, 'EMBEDDINGS_FILE_NAME', str(emb_file))
|
| 143 |
+
monkeypatch.setattr(mod.GlobalConfig, 'ICONS_FILE_NAME', str(names_file))
|
| 144 |
+
|
| 145 |
+
# Run save which uses the dummy tokenizer/model to create embeddings.
|
| 146 |
+
mod.save_icons_embeddings()
|
| 147 |
+
|
| 148 |
+
assert emb_file.exists()
|
| 149 |
+
assert names_file.exists()
|
| 150 |
+
|
| 151 |
+
loaded_emb, loaded_names = mod.load_saved_embeddings()
|
| 152 |
+
assert isinstance(loaded_emb, np.ndarray)
|
| 153 |
+
assert isinstance(loaded_names, np.ndarray)
|
| 154 |
+
assert loaded_emb.shape[0] == len(loaded_names)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def test_find_icons(monkeypatch: Any, tmp_path: Path) -> None:
|
| 158 |
+
"""
|
| 159 |
+
find_icons should map keywords to the most similar icon filenames
|
| 160 |
+
based on cosine similarity against pre-saved embeddings.
|
| 161 |
+
"""
|
| 162 |
+
# Reload module with dummy model but we will monkeypatch get_embeddings
|
| 163 |
+
# to control keyword embeddings precisely.
|
| 164 |
+
mod = _reload_module_with_dummies(monkeypatch, emb_dim=3)
|
| 165 |
+
|
| 166 |
+
# Prepare saved embeddings with two icons.
|
| 167 |
+
emb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
|
| 168 |
+
names = np.array(['a_icon', 'b_icon'])
|
| 169 |
+
|
| 170 |
+
emb_file = tmp_path / 'emb_s.npy'
|
| 171 |
+
names_file = tmp_path / 'names_s.npy'
|
| 172 |
+
np.save(str(emb_file), emb)
|
| 173 |
+
np.save(str(names_file), names)
|
| 174 |
+
|
| 175 |
+
monkeypatch.setattr(mod.GlobalConfig, 'EMBEDDINGS_FILE_NAME', str(emb_file))
|
| 176 |
+
monkeypatch.setattr(mod.GlobalConfig, 'ICONS_FILE_NAME', str(names_file))
|
| 177 |
+
|
| 178 |
+
# Make keyword embeddings match each saved one.
|
| 179 |
+
def fake_get_embeddings(keywords: List[str]) -> np.ndarray:
|
| 180 |
+
out = []
|
| 181 |
+
for kw in keywords:
|
| 182 |
+
if kw == 'match_a':
|
| 183 |
+
out.append([1.0, 0.0, 0.0])
|
| 184 |
+
else:
|
| 185 |
+
out.append([0.0, 1.0, 0.0])
|
| 186 |
+
return np.array(out)
|
| 187 |
+
|
| 188 |
+
monkeypatch.setattr(mod, 'get_embeddings', fake_get_embeddings)
|
| 189 |
+
|
| 190 |
+
res = mod.find_icons(['match_a', 'other'])
|
| 191 |
+
assert list(res) == ['a_icon', 'b_icon']
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def test_main_calls_and_prints(monkeypatch: Any, capsys: Any) -> None:
|
| 195 |
+
"""
|
| 196 |
+
main should call save_icons_embeddings and find_icons and print the
|
| 197 |
+
zipped results. We monkeypatch the heavy functions to keep it fast.
|
| 198 |
+
"""
|
| 199 |
+
mod = _reload_module_with_dummies(monkeypatch)
|
| 200 |
+
called = {}
|
| 201 |
+
|
| 202 |
+
def fake_save():
|
| 203 |
+
called['saved'] = True
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def fake_find(keywords: List[str]) -> List[str]:
|
| 207 |
+
called['found'] = True
|
| 208 |
+
return ['x' for _ in keywords]
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
monkeypatch.setattr(mod, 'save_icons_embeddings', fake_save)
|
| 212 |
+
monkeypatch.setattr(mod, 'find_icons', fake_find)
|
| 213 |
+
|
| 214 |
+
mod.main()
|
| 215 |
+
|
| 216 |
+
captured = capsys.readouterr()
|
| 217 |
+
assert 'The relevant icon files are' in captured.out
|
| 218 |
+
assert called.get('saved') is True
|
| 219 |
+
assert called.get('found') is True
|