import streamlit as st from transformers import pipeline from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score st.write("begin of house prediction") st.write("load dataset") # Load the California Housing dataset data = fetch_california_housing(as_frame=True) X = data.data y = data.target # Split the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) st.write("standardize") # Standardize features scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) st.write("train") # Train the model model = LinearRegression() model.fit(X_train, y_train) st.write("make predictions") # Make predictions on the test set y_pred = model.predict(X_test) st.write("evaluate") # Evaluate the model mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) st.write(f"Mean Squared Error: {mse:.2f}") st.write(f"R-squared Score: {r2:.2f}") # print(f"Mean Squared Error: {mse:.2f}") # print(f"R-squared Score: {r2:.2f}") st.write("end of house prediction") sentiment_pipeline = pipeline("sentiment-analysis") st.title("Sentiment Analysis with HuggingFace Spaces") st.write("Enter a sentence to analyze its sentiment:") user_input = st.text_input("") if user_input: result = sentiment_pipeline(user_input) sentiment = result[0]["label"] confidence = result[0]["score"] st.write(f"Sentiment: {sentiment}") st.write(f"Confidence: {confidence:.2f}")