import torch def forward(model_name, model, input_ids, past, device='cpu'): if "gpt2" in model_name or "ctrl" in model_name: if past is not None: return model(input_ids[:, -1], past=past) return model(input_ids) elif "xlnet" in model_name: input_ids = torch.cat(( input_ids, torch.zeros((input_ids.shape[0], 1), dtype=torch.long, device=device) ), dim=1) perm_mask = torch.zeros( (input_ids.shape[0], input_ids.shape[1], input_ids.shape[1]), dtype=torch.float, device=device ) perm_mask[:, :, -1] = 1.0 target_mapping = torch.zeros( (input_ids.shape[0], 1, input_ids.shape[1]), dtype=torch.float, device=device) target_mapping[:, 0, -1] = 1.0 return model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) elif "transfo-xl" in model_name: return model(input_ids, mems=past) else: return model(input_ids) def create_context(model_name, tokenizer, initial_text="", padding_text=None, max_tokens=512): if not len(initial_text) and "gpt2" in model_name: initial_text = "<|endoftext|>" if 'xlnet' in model_name or "transfo-xl" in model_name: initial_text = padding_text + initial_text if 'transfo-xl' in model_name: max_tokens = int(max_tokens / 2) context_tokens = tokenizer.encode(initial_text)[-max_tokens:] if "gpt2" in model_name: eot_token = tokenizer.encoder["<|endoftext|>"] if len(context_tokens) == 0: context_tokens = [tokenizer.encoder["<|endoftext|>"]] elif "xlnet" in model_name: eot_token = tokenizer.convert_tokens_to_ids('') else: eot_token = None dot_token = tokenizer.encode(".")[-1] return context_tokens, eot_token, dot_token