import torch import gradio as gr import data_utils from gpt_language_model import GPTLanguageModel device = 'cuda' if torch.cuda.is_available() else 'cpu' inference_model = GPTLanguageModel() inference_model.load_state_dict(torch.load('model/friendsGPT.pth', map_location=torch.device('cpu'))) inferenceModel = inference_model.to(device) def generate(): context = torch.zeros((1, 1), dtype=torch.long, device=device) print("Context prepared") output = data_utils.decode(inferenceModel.generate(context, max_new_tokens=500)[0].tolist()) print("Output : ", output) return output demo = gr.Interface(fn=generate, inputs=None, outputs="text", title="F.R.I.E.N.D.S GPT", thumbnail="FRIENDS.jpg") if __name__ == "__main__": demo.launch(share=True)