watchtowerss's picture
track-anything --version 1
4d1ebf3
raw
history blame
2.33 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import defaultdict
def dice_loss(input_mask, cls_gt):
num_objects = input_mask.shape[1]
losses = []
for i in range(num_objects):
mask = input_mask[:,i].flatten(start_dim=1)
# background not in mask, so we add one to cls_gt
gt = (cls_gt==(i+1)).float().flatten(start_dim=1)
numerator = 2 * (mask * gt).sum(-1)
denominator = mask.sum(-1) + gt.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
losses.append(loss)
return torch.cat(losses).mean()
# https://stackoverflow.com/questions/63735255/how-do-i-compute-bootstrapped-cross-entropy-loss-in-pytorch
class BootstrappedCE(nn.Module):
def __init__(self, start_warm, end_warm, top_p=0.15):
super().__init__()
self.start_warm = start_warm
self.end_warm = end_warm
self.top_p = top_p
def forward(self, input, target, it):
if it < self.start_warm:
return F.cross_entropy(input, target), 1.0
raw_loss = F.cross_entropy(input, target, reduction='none').view(-1)
num_pixels = raw_loss.numel()
if it > self.end_warm:
this_p = self.top_p
else:
this_p = self.top_p + (1-self.top_p)*((self.end_warm-it)/(self.end_warm-self.start_warm))
loss, _ = torch.topk(raw_loss, int(num_pixels * this_p), sorted=False)
return loss.mean(), this_p
class LossComputer:
def __init__(self, config):
super().__init__()
self.config = config
self.bce = BootstrappedCE(config['start_warm'], config['end_warm'])
def compute(self, data, num_objects, it):
losses = defaultdict(int)
b, t = data['rgb'].shape[:2]
losses['total_loss'] = 0
for ti in range(1, t):
for bi in range(b):
loss, p = self.bce(data[f'logits_{ti}'][bi:bi+1, :num_objects[bi]+1], data['cls_gt'][bi:bi+1,ti,0], it)
losses['p'] += p / b / (t-1)
losses[f'ce_loss_{ti}'] += loss / b
losses['total_loss'] += losses['ce_loss_%d'%ti]
losses[f'dice_loss_{ti}'] = dice_loss(data[f'masks_{ti}'], data['cls_gt'][:,ti,0])
losses['total_loss'] += losses[f'dice_loss_{ti}']
return losses