import math import torch import torch.nn.functional as F import torch.onnx.operators from torch import nn from torch.nn import Parameter import utils class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): return x.view(self.shape) class Permute(nn.Module): def __init__(self, *args): super(Permute, self).__init__() self.args = args def forward(self, x): return x.permute(self.args) class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert (kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal def Embedding(num_embeddings, embedding_dim, padding_idx=None): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) return m def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if not export and torch.cuda.is_available(): try: from apex.normalization import FusedLayerNorm return FusedLayerNorm(normalized_shape, eps, elementwise_affine) except ImportError: pass return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.) return m class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx, ) self.register_buffer('_float_tensor', torch.FloatTensor(1)) @staticmethod def get_embedding(num_embeddings, embedding_dim, padding_idx=None): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.shape[:2] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx, ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils.make_positions(input, self.padding_idx) if positions is None else positions return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() def max_positions(self): """Maximum number of supported positions.""" return int(1e5) # an arbitrary large number class ConvTBC(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding=0): super(ConvTBC, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.weight = torch.nn.Parameter(torch.Tensor( self.kernel_size, in_channels, out_channels)) self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) def forward(self, input): return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding) class MultiheadAttention(nn.Module): def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ 'value to be of the same size' if self.qkv_same_dim: self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) else: self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.enable_torch_version = False if hasattr(F, "multi_head_attention_forward"): self.enable_torch_version = True else: self.enable_torch_version = False self.last_attn_probs = None def reset_parameters(self): if self.qkv_same_dim: nn.init.xavier_uniform_(self.in_proj_weight) else: nn.init.xavier_uniform_(self.k_proj_weight) nn.init.xavier_uniform_(self.v_proj_weight) nn.init.xavier_uniform_(self.q_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.) nn.init.constant_(self.out_proj.bias, 0.) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None, before_softmax=False, need_head_weights=False, enc_dec_attn_constraint_mask=None, reset_attn_weight=None ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None: if self.qkv_same_dim: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask) else: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) if incremental_state is not None: print('Not implemented error.') exit() else: saved_state = None if self.self_attention: # self-attention q, k, v = self.in_proj_qkv(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k = self.in_proj_k(key) v = self.in_proj_v(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if saved_state is not None: print('Not implemented error.') exit() src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: if len(attn_mask.shape) == 2: attn_mask = attn_mask.unsqueeze(0) elif len(attn_mask.shape) == 3: attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( bsz * self.num_heads, tgt_len, src_len) attn_weights = attn_weights + attn_mask if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( enc_dec_attn_constraint_mask.unsqueeze(2).bool(), -1e9, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -1e9, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) if reset_attn_weight is not None: if reset_attn_weight: self.last_attn_probs = attn_probs.detach() else: assert self.last_attn_probs is not None attn_probs = self.last_attn_probs attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) else: attn_weights = None return attn, (attn_weights, attn_logits) def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_q(self, query): if self.qkv_same_dim: return self._in_proj(query, end=self.embed_dim) else: bias = self.in_proj_bias if bias is not None: bias = bias[:self.embed_dim] return F.linear(query, self.q_proj_weight, bias) def in_proj_k(self, key): if self.qkv_same_dim: return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) else: weight = self.k_proj_weight bias = self.in_proj_bias if bias is not None: bias = bias[self.embed_dim:2 * self.embed_dim] return F.linear(key, weight, bias) def in_proj_v(self, value): if self.qkv_same_dim: return self._in_proj(value, start=2 * self.embed_dim) else: weight = self.v_proj_weight bias = self.in_proj_bias if bias is not None: bias = bias[2 * self.embed_dim:] return F.linear(value, weight, bias) def _in_proj(self, input, start=0, end=None): weight = self.in_proj_weight bias = self.in_proj_bias weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): return attn_weights class Swish(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_variables[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class CustomSwish(nn.Module): def forward(self, input_tensor): return Swish.apply(input_tensor) class Mish(nn.Module): def forward(self, x): return x * torch.tanh(F.softplus(x)) class TransformerFFNLayer(nn.Module): def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): super().__init__() self.kernel_size = kernel_size self.dropout = dropout self.act = act if padding == 'SAME': self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2) elif padding == 'LEFT': self.ffn_1 = nn.Sequential( nn.ConstantPad1d((kernel_size - 1, 0), 0.0), nn.Conv1d(hidden_size, filter_size, kernel_size) ) self.ffn_2 = Linear(filter_size, hidden_size) if self.act == 'swish': self.swish_fn = CustomSwish() def forward(self, x, incremental_state=None): # x: T x B x C if incremental_state is not None: assert incremental_state is None, 'Nar-generation does not allow this.' exit(1) x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) x = x * self.kernel_size ** -0.5 if incremental_state is not None: x = x[-1:] if self.act == 'gelu': x = F.gelu(x) if self.act == 'relu': x = F.relu(x) if self.act == 'swish': x = self.swish_fn(x) x = F.dropout(x, self.dropout, training=self.training) x = self.ffn_2(x) return x class BatchNorm1dTBC(nn.Module): def __init__(self, c): super(BatchNorm1dTBC, self).__init__() self.bn = nn.BatchNorm1d(c) def forward(self, x): """ :param x: [T, B, C] :return: [T, B, C] """ x = x.permute(1, 2, 0) # [B, C, T] x = self.bn(x) # [B, C, T] x = x.permute(2, 0, 1) # [T, B, C] return x class EncSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'): super().__init__() self.c = c self.dropout = dropout self.num_heads = num_heads if num_heads > 0: if norm == 'ln': self.layer_norm1 = LayerNorm(c) elif norm == 'bn': self.layer_norm1 = BatchNorm1dTBC(c) self.self_attn = MultiheadAttention( self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False, ) if norm == 'ln': self.layer_norm2 = LayerNorm(c) elif norm == 'bn': self.layer_norm2 = BatchNorm1dTBC(c) self.ffn = TransformerFFNLayer( c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act) def forward(self, x, encoder_padding_mask=None, **kwargs): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training if self.num_heads > 0: residual = x x = self.layer_norm1(x) x, _, = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] residual = x x = self.layer_norm2(x) x = self.ffn(x) x = F.dropout(x, self.dropout, training=self.training) x = residual + x x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] return x class DecSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, act='gelu'): super().__init__() self.c = c self.dropout = dropout self.layer_norm1 = LayerNorm(c) self.self_attn = MultiheadAttention( c, num_heads, self_attention=True, dropout=attention_dropout, bias=False ) self.layer_norm2 = LayerNorm(c) self.encoder_attn = MultiheadAttention( c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False, ) self.layer_norm3 = LayerNorm(c) self.ffn = TransformerFFNLayer( c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, attn_out=None, reset_attn_weight=None, **kwargs, ): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training self.layer_norm3.training = layer_norm_training residual = x x = self.layer_norm1(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm2(x) if encoder_out is not None: x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, enc_dec_attn_constraint_mask=None, # utils.get_incremental_state(self, incremental_state, 'enc_dec_attn_constraint_mask'), reset_attn_weight=reset_attn_weight ) attn_logits = attn[1] else: assert attn_out is not None x = self.encoder_attn.in_proj_v(attn_out.transpose(0, 1)) attn_logits = None x = F.dropout(x, self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm3(x) x = self.ffn(x, incremental_state=incremental_state) x = F.dropout(x, self.dropout, training=self.training) x = residual + x # if len(attn_logits.size()) > 3: # indices = attn_logits.softmax(-1).max(-1).values.sum(-1).argmax(-1) # attn_logits = attn_logits.gather(1, # indices[:, None, None, None].repeat(1, 1, attn_logits.size(-2), attn_logits.size(-1))).squeeze(1) return x, attn_logits