import os import torchaudio import gradio as gr import spaces import torch from transformers import AutoProcessor, AutoModelForCTC device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # load examples examples = [] examples_dir = "examples" if os.path.exists(examples_dir): for filename in os.listdir(examples_dir): if filename.endswith((".wav", ".mp3", ".ogg")): examples.append([os.path.join(examples_dir, filename)]) # Load model and processor MODEL_PATH = "badrex/w2v-bert-2.0-kinyarwanda-asr" processor = AutoProcessor.from_pretrained(MODEL_PATH) model = AutoModelForCTC.from_pretrained(MODEL_PATH) # move model and processor to device model = model.to(device) @spaces.GPU() def process_audio(audio_path): """Process audio with return the generated response. Args: audio_path: Path to the audio file to be transcribed. Returns: String containing the transcribed text from the audio file, or an error message if the audio file is missing. """ if not audio_path: return "Please upload an audio file." # get audio array audio_array, sample_rate = torchaudio.load(audio_path) # if sample rate is not 16000, resample to 16000 if sample_rate != 16000: audio_array = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio_array) inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): logits = model(**inputs).logits outputs = torch.argmax(logits, dim=-1) decoded_outputs = processor.batch_decode( outputs, skip_special_tokens=True ) return decoded_outputs[0].strip() # Define Gradio interface with gr.Blocks(title="ASRwanda") as demo: gr.Markdown("# ASRwanda ποΈ Speech Recognition for Kinyarwanda Language π·πΌ") gr.Markdown("""
Developed with β€ by Badr al-Absi β
Muraho ππΌ
This is a demo for ASRwanda, a Transformer-based automatic speech recognition (ASR) system for Kinyarwanda language.
The underlying ASR model was trained on 1000 hours of transcribed speech provided by
Digital Umuganda as part of the Kinyarwanda
ASR hackathon on Kaggle.
Simply upload an audio file π€ or record yourself speaking ποΈβΊοΈ to try out the model!