import json import time from transformers import AutoTokenizer, AutoModel from langchain_community.chat_models import ChatOpenAI import pandas as pd from config import settings from langchain_core.utils.function_calling import convert_to_openai_function from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.memory import ConversationBufferWindowMemory from langchain.schema.runnable import RunnablePassthrough from langchain.agents.format_scratchpad import format_to_openai_functions from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser from langchain.agents import AgentExecutor from tools import moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post, recommand_podcast, set_chatbot_name from database_functions import get_chat_bot_name,get_chat_history, get_last_conversion, get_last_session, get_mood_data,use_tools def get_mood_summary(user_id): data = get_mood_data(user_id) system_prompt = """You are an descripting assistant that provides the breif description of the user data which is related to their mood tracking activity. Properly descibe the reason for their mood.Avoid times and dates in description Here is the user data: {data}""" llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7) return llm.invoke(system_prompt.format(data=data)).content def deanonymizer(input, anonymizer): input = anonymizer.deanonymize(input) map = anonymizer.deanonymizer_mapping if map: for k in map["PERSON"]: names = k.split(" ") for i in names: input = input.replace(i, map["PERSON"][k]) return input def get_last_session_summary(last_session_id, second_last_session_id): conversation = get_last_conversion(last_session_id,second_last_session_id) if conversation: system_prompt = """ summarize whole conversation in at max 2 sentence. conversation: {conversation} summary: """ llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7) response = llm.invoke(system_prompt.format(conversation=conversation)).content # print("********************************* PREVIOUS PROBLEM *******************************************") # print(response) return response else: return "" def create_agent(user_id): # print("get user Id**********************",user_id) previous_session_id = get_last_session(user_id) # print(previous_session_id) if use_tools(previous_session_id["last_session_id"]): tools = [moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post, recommand_podcast, set_chatbot_name] else: tools = [set_chatbot_name] functions = [convert_to_openai_function(f) for f in tools] model = ChatOpenAI(model_name=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, frequency_penalty= 1, temperature=settings.TEMPERATURE).bind(functions=functions) chat_bot_name = get_chat_bot_name(user_id) # print("CHABT NAME", chat_bot_name) start = time.time() mood_summary = get_mood_summary(user_id) prevous_problem_summary = None if previous_session_id['second_last_session_id']: prevous_problem_summary = get_last_session_summary(previous_session_id['last_session_id'], previous_session_id['second_last_session_id']) # print("**************************************** SUMMARY ***********************************************") # print(prevous_problem_summary) print("time require for mood summary: ",time.time()-start) prompt = ChatPromptTemplate.from_messages([("system", settings.SYSTEM_PROMPT.format(name = chat_bot_name, mood="", previous_summary=prevous_problem_summary)), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad")]) memory = ConversationBufferWindowMemory(memory_key="chat_history", chat_memory=get_chat_history( previous_session_id['last_session_id']), return_messages=True, k=5) # print("memory created") chain = RunnablePassthrough.assign(agent_scratchpad=lambda x: format_to_openai_functions(x["intermediate_steps"])) | prompt | model | OpenAIFunctionsAgentOutputParser() agent_executor = AgentExecutor( agent=chain, tools=tools, memory=memory, verbose=True) return agent_executor