import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" try: os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html") except Exception as e: print(e) from pydoc import describe from huggingface_hub import hf_hub_download import gradio as gr import os from datetime import datetime from PIL import Image import torch import torchvision import skimage import paddlehub import numpy as np from lib.options import BaseOptions from apps.crop_img import process_img from apps.eval import Evaluator from types import SimpleNamespace import trimesh import glob print( "torch: ", torch.__version__, "\ntorchvision: ", torchvision.__version__, "\nskimage:", skimage.__version__ ) print("EnV", os.environ) net_C = hf_hub_download("radames/PIFu-upright-standing", filename="net_C") net_G = hf_hub_download("radames/PIFu-upright-standing", filename="net_G") opt = BaseOptions() opts = opt.parse_to_dict() opts['batch_size'] = 1 opts['mlp_dim'] = [257, 1024, 512, 256, 128, 1] opts['mlp_dim_color'] = [513, 1024, 512, 256, 128, 3] opts['num_stack'] = 4 opts['num_hourglass'] = 2 opts['resolution'] = 128 opts['hg_down'] = 'ave_pool' opts['norm'] = 'group' opts['norm_color'] = 'group' opts['load_netG_checkpoint_path'] = net_G opts['load_netC_checkpoint_path'] = net_C opts['results_path'] = "./results" opts['name'] = "spaces_demo" opts = SimpleNamespace(**opts) print("Params", opts) evaluator = Evaluator(opts) bg_remover_model = paddlehub.Module(name="U2Net") def process(img_path): base = os.path.basename(img_path) img_name = os.path.splitext(base)[0] print("\n\n\nStarting Process", datetime.now()) print("image name", img_name) img_raw = Image.open(img_path).convert('RGB') img = img_raw.resize( (512, int(512 * img_raw.size[1] / img_raw.size[0])), Image.Resampling.LANCZOS) try: # remove background print("Removing Background") masks = bg_remover_model.Segmentation( images=[np.array(img)], paths=None, batch_size=1, input_size=320, output_dir='./PIFu/inputs', visualization=False) mask = masks[0]["mask"] front = masks[0]["front"] except Exception as e: print(e) print("Aliging mask with input training image") print("Not aligned", front.shape, mask.shape) img_new, msk_new = process_img(front, mask) print("Aligned", img_new.shape, msk_new.shape) try: time = datetime.now() data = evaluator.load_image_from_memory(img_new, msk_new, img_name) print("Evaluating via PIFu", time) evaluator.eval(data, True) print("Success Evaluating via PIFu", datetime.now() - time) result_path = f'./{opts.results_path}/{opts.name}/result_{img_name}' except Exception as e: print("Error evaluating via PIFu", e) try: mesh = trimesh.load(result_path + '.obj') # flip mesh mesh.apply_transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) mesh.export(file_obj=result_path + '.glb') result_gltf = result_path + '.glb' return [result_gltf, result_gltf] except Exception as e: print("error generating MESH", e) examples = sorted(glob.glob('examples/*.png')) description = ''' # PIFu Clothed Human Digitization ### PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization This is a demo for PIFu model . The pre-trained model has the following warning: > Warning: The released model is trained with mostly upright standing scans with weak perspectie projection and the pitch angle of 0 degree. Reconstruction quality may degrade for images highly deviated from trainining data. **The inference takes about 180seconds for a new image.**
More #### Image Credits * Julien and Clem * [StyleGAN Humans](https://huggingface.co/spaces/hysts/StyleGAN-Human) * [Renderpeople: Dennis](https://renderpeople.com) #### More * https://phorhum.github.io/ * https://github.com/yuliangxiu/icon * https://shunsukesaito.github.io/PIFuHD/
''' iface = gr.Interface( fn=process, description=description, inputs=gr.Image(type="filepath", label="Input Image"), outputs=[ gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), gr.File(label="Download 3D Model") ], examples=examples, allow_flagging="never", cache_examples=True ) if __name__ == "__main__": iface.launch(debug=True, enable_queue=False)