import gradio as gr import numpy as np import librosa import os import soundfile as sf import generation_utilities os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Default song and similarity values song_default = np.random.choice(["22", "Anti-Hero", "Back-to-december","Blank-Space","Cardigan","Delicate","Lover","Love-Story","Willow","You-Belong-With-Me"]) similarity_default = round(np.random.uniform(0.8, 0.99), 2) def generate_song(user_id, song_options, similarity): # Load songs song_list = [librosa.load(os.path.join(os.getcwd(), f"input_songs/{song}.mp3"), sr=22050)[0] for song in song_options] # Generate spectrogram and song spectrogram, generated_song, model_name = generation_utilities.generate_songs(song_list, similarity=similarity, quality=500, merging_quality=100) # Save generated song and spectrogram sf.write("ui/temp.wav", generated_song, 22050) np.save("ui/temp.npy", spectrogram) # Return user info, generated song path, and link to rating page return { "user_id": user_id, "song_list": song_options, "similarity": similarity, "model_name": model_name, "generated_song": "ui/temp.wav", "message": "Song generated! [Click here to go to the rating page](ui/gradio_rating.py)" } # Gradio Interface with gr.Blocks() as demo: user_id = gr.Textbox(label="Enter your user ID") song_options = gr.CheckboxGroup(["22", "Anti-Hero", "Back-to-december","Blank-Space","Cardigan","Delicate","Lover","Love-Story","Willow","You-Belong-With-Me"], label="Select songs from library", value=[song_default]) similarity = gr.Slider(minimum=0.0, maximum=1.0, value=similarity_default, label="Similarity") output = gr.JSON(label="Session Info") generate_button = gr.Button("Generate Song") generate_button.click(fn=generate_song, inputs=[user_id, song_options, similarity], outputs=output) demo.launch()