import gradio as gr import whisper from transformers import pipeline import pandas as pd, numpy as np import os import torchaudio import librosa from scipy.io.wavfile import write import shutil import soundfile as sf import noisereduce as nr from scipy.stats import skew from tqdm import tqdm import requests import pickle import dash import dash_bootstrap_components as dbc from dash import html sr = 8000 url = "https://huggingface.co/spaces/aslanovaf/Sentiment_Analysis_Azerbaijani/resolve/main/sentiment_model_8000.pickle" hf_token = os.environ.get("HF_TOKEN") headers = {"Authorization": f"Bearer {hf_token}"} response = requests.get(url, headers=headers) if response.status_code == 200: model = pickle.loads(response.content) else: st.markdown(f"Failed to download TTS from {url} (Status code: {response.status_code})") def split_full_audio_15_sec(audio_file): audio, orig_sr = sf.read(audio_file) audio = librosa.resample(y=audio, orig_sr=orig_sr, target_sr=sr) chunk_length = 15 * sr total_length = len(audio) start_index = 0 end_index = min(chunk_length, total_length) f = 0 chunks = [] while start_index < total_length: chunk = audio[start_index:end_index] chunk_name = f"example_{f}.wav" chunk_duration = len(chunk)/sr if chunk_duration<3: break chunks.append(chunk) start_index = end_index end_index = min(end_index + chunk_length, total_length) f+=1 return chunks def get_mfcc(name): resampled_audio = name try: reduced_noise = nr.reduce_noise(resampled_audio, sr=sr) ft1 = librosa.feature.mfcc(y=reduced_noise, sr = sr, n_mfcc=16) ft2 = librosa.feature.zero_crossing_rate(reduced_noise)[0] ft3 = librosa.feature.spectral_rolloff(y=reduced_noise)[0] ft4 = librosa.feature.spectral_centroid(y=reduced_noise)[0] ft1_trunc = np.hstack((np.mean(ft1, axis=1), np.std(ft1, axis=1), skew(ft1, axis = 1), np.max(ft1, axis = 1), np.min(ft1, axis = 1))) ft2_trunc = np.hstack((np.mean(ft2), np.std(ft2), skew(ft2), np.max(ft2), np.min(ft2))) ft3_trunc = np.hstack((np.mean(ft3), np.std(ft3), skew(ft3), np.max(ft3), np.min(ft3))) ft4_trunc = np.hstack((np.mean(ft4), np.std(ft4), skew(ft4), np.max(ft4), np.min(ft4))) return pd.Series(np.hstack((ft1_trunc, ft2_trunc, ft3_trunc, ft4_trunc))) except: print('bad file') return pd.Series([0]*95) def analyze_sentiment(audio): chunks = split_full_audio_15_sec(audio) chunked_df = pd.DataFrame(data={'Chunk_order': [f'Chunk_{i+1}' for i in range(len(chunks))], 'Data': chunks}) df_features = chunked_df['Data'].apply(get_mfcc) df = pd.concat([chunked_df, df_features], axis=1) df = df.drop(columns=['Data']) df.columns = ['Chunk_order']+[f'Feature_{i+1}' for i in range(95)] df['Prediction'] = model.predict(df.drop(columns=['Chunk_order'])) df['Prediction'] = df['Prediction'].map({ 'pozitive_normal':'Normal', 'scope':'Silence', 'neqativ':'Negative' }) clean_df = df[['Chunk_order', 'Prediction']] predictions = df['Prediction'].tolist() final_prediction = 'Negative' if 'Negative' in predictions else 'Normal' if 'Normal' in predictions else 'Silence' final_prediction_2x = 'Negative' if predictions.count('Negative')>1 else 'Normal' if 'Normal' in predictions else 'Silence' color_map = { 'Normal':'success', 'Silence': 'warning', 'Negative': 'danger' } return (', '.join(predictions), final_prediction) title = """

🎤 Azerbaijani Audio Speech Sentiment Analysis 💬

""" image_path = "thmbnail.jpg" description = """ 💻 This demo showcases a general-purpose sentiment analysis process. It is trained on a collection of audio calls from banking/fintech industries based on audio features. The main analysis predicts one of the categories (Normal/Negative/Silence) for each 15-second bucket in the audio. The final category for the whole audio is also estimated.
⚙️ Components of the tool:

     - Sentiment analysis directly of the audios.

❓ Use the microphone for real-time audio recording.
↑ Or upload an audio file.

⚡️ The model will extract audio features and perform sentiment analysis on the audio.
""" custom_css = """ #banner-image { display: block; margin-left: auto; margin-right: auto; } #chat-message { font-size: 14px; min-height: 300px; } """ block = gr.Blocks(css=custom_css) with block: gr.HTML(title) with gr.Row(): with gr.Column(): gr.HTML(description) with gr.Column(): gr.Image(image_path, elem_id="banner-image", show_label=False) gr.Interface( fn=analyze_sentiment, inputs=[ gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio"), ], outputs=[gr.Textbox(label="Sentiment Analysis Results of 15-second buckets"),gr.Textbox(label="Final Prediction")], # layout="vertical", # theme="huggingface", examples=[ ["./Recording_1.wav", "analyze_sentiment"], ["./Recording_2.wav", "analyze_sentiment"], ], cache_examples=False, allow_flagging="never", ) # gr.TabbedInterface([mic, file], ["Audio from Microphone", "Audio from File"]) block.launch()