import gradio as gr import whisper from transformers import pipeline import pandas as pd, numpy as np import os import torchaudio import librosa from scipy.io.wavfile import write import shutil import soundfile as sf import noisereduce as nr from scipy.stats import skew from tqdm import tqdm import requests import pickle import dash import dash_bootstrap_components as dbc from dash import html sr = 8000 url = "https://huggingface.co/spaces/aslanovaf/Sentiment_Analysis_Azerbaijani/resolve/main/sentiment_model_8000.pickle" hf_token = os.environ.get("HF_TOKEN") headers = {"Authorization": f"Bearer {hf_token}"} response = requests.get(url, headers=headers) if response.status_code == 200: model = pickle.loads(response.content) else: st.markdown(f"Failed to download TTS from {url} (Status code: {response.status_code})") def split_full_audio_15_sec(audio_file): audio, orig_sr = sf.read(audio_file) audio = librosa.resample(y=audio, orig_sr=orig_sr, target_sr=sr) chunk_length = 15 * sr total_length = len(audio) start_index = 0 end_index = min(chunk_length, total_length) f = 0 chunks = [] while start_index < total_length: chunk = audio[start_index:end_index] chunk_name = f"example_{f}.wav" chunk_duration = len(chunk)/sr if chunk_duration<3: break chunks.append(chunk) start_index = end_index end_index = min(end_index + chunk_length, total_length) f+=1 return chunks def get_mfcc(name): resampled_audio = name try: reduced_noise = nr.reduce_noise(resampled_audio, sr=sr) ft1 = librosa.feature.mfcc(y=reduced_noise, sr = sr, n_mfcc=16) ft2 = librosa.feature.zero_crossing_rate(reduced_noise)[0] ft3 = librosa.feature.spectral_rolloff(y=reduced_noise)[0] ft4 = librosa.feature.spectral_centroid(y=reduced_noise)[0] ft1_trunc = np.hstack((np.mean(ft1, axis=1), np.std(ft1, axis=1), skew(ft1, axis = 1), np.max(ft1, axis = 1), np.min(ft1, axis = 1))) ft2_trunc = np.hstack((np.mean(ft2), np.std(ft2), skew(ft2), np.max(ft2), np.min(ft2))) ft3_trunc = np.hstack((np.mean(ft3), np.std(ft3), skew(ft3), np.max(ft3), np.min(ft3))) ft4_trunc = np.hstack((np.mean(ft4), np.std(ft4), skew(ft4), np.max(ft4), np.min(ft4))) return pd.Series(np.hstack((ft1_trunc, ft2_trunc, ft3_trunc, ft4_trunc))) except: print('bad file') return pd.Series([0]*95) def analyze_sentiment(audio): chunks = split_full_audio_15_sec(audio) chunked_df = pd.DataFrame(data={'Chunk_order': [f'Chunk_{i+1}' for i in range(len(chunks))], 'Data': chunks}) df_features = chunked_df['Data'].apply(get_mfcc) df = pd.concat([chunked_df, df_features], axis=1) df = df.drop(columns=['Data']) df.columns = ['Chunk_order']+[f'Feature_{i+1}' for i in range(95)] df['Prediction'] = model.predict(df.drop(columns=['Chunk_order'])) df['Prediction'] = df['Prediction'].map({ 'pozitive_normal':'Normal', 'scope':'Silence', 'neqativ':'Negative' }) clean_df = df[['Chunk_order', 'Prediction']] predictions = df['Prediction'].tolist() final_prediction = 'Negative' if 'Negative' in predictions else 'Normal' if 'Normal' in predictions else 'Silence' final_prediction_2x = 'Negative' if predictions.count('Negative')>1 else 'Normal' if 'Normal' in predictions else 'Silence' color_map = { 'Normal':'success', 'Silence': 'warning', 'Negative': 'danger' } return (', '.join(predictions), final_prediction) title = """