import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository, InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/WizardLM/WizardCoder-Python-34B-V1.0" BOT_NAME = "Falcon" STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] EXAMPLES = [ ["what are the benefits of programming in python?"], ["explain binary search in java?"], ] client = InferenceClient( API_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, ) def format_prompt(message, history, system_prompt): prompt = "" if system_prompt: prompt += f"System: {system_prompt}\n" for user_prompt, bot_response in history: prompt += f"User: {user_prompt}\n" prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " prompt += f"""User: {message} Falcon:""" return prompt seed = 42 def generate( prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) global seed generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stop_sequences=STOP_SEQUENCES, do_sample=True, seed=seed, ) seed = seed + 1 formatted_prompt = format_prompt(prompt, history, system_prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text for stop_str in STOP_SEQUENCES: if output.endswith(stop_str): output = output[:-len(stop_str)] output = output.rstrip() yield output yield output return output additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.1, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] def vote(data: gr.LikeData): if data.liked: print("You upvoted this response: " + data.value) else: print("You downvoted this response: " + data.value) chatbot = gr.Chatbot(avatar_images=('user.png', 'bot.png'),bubble_full_width = False) chat_interface = gr.ChatInterface( generate, chatbot = chatbot, examples=EXAMPLES, additional_inputs=additional_inputs, ) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown( """# Wizard Coder 34b Demo ## This app provides a way of using wizard coder via a demo ⚠️ **Limitations**: the model can produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. """ ) chatbot.like(vote, None, None) chat_interface.render() demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)