import gradio as gr from transformers import pipeline import io, base64 from PIL import Image import numpy as np import tensorflow as tf import mediapy import os import sys from huggingface_hub import snapshot_download import streamlit as st import firebase_admin from firebase_admin import credentials from firebase_admin import firestore import datetime import tempfile from typing import Optional import numpy as np from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer # firestore singleton is a cached multiuser instance to persist shared crowdsource memory @st.experimental_singleton def get_db_firestore(): cred = credentials.Certificate('test.json') firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',}) db = firestore.client() return db #start firestore singleton db = get_db_firestore() # create ASR ML pipeline asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") # create Text Classification pipeline classifier = pipeline("text-classification") # create text generator pipeline story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator") # transcribe function def transcribe(audio): text = asr(audio)["text"] return text def speech_to_text(speech): text = asr(speech)["text"] return text def text_to_sentiment(text): sentiment = classifier(text)[0]["label"] return sentiment def upsert(text): date_time =str(datetime.datetime.today()) doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time) doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,}) saved = select('Text2SpeechSentimentSave', date_time) # check it here: https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces return saved def select(collection, document): doc_ref = db.collection(collection).document(document) doc = doc_ref.get() docid = ("The id is: ", doc.id) contents = ("The contents are: ", doc.to_dict()) return contents def selectall(text): docs = db.collection('Text2SpeechSentimentSave').stream() doclist='' for doc in docs: r=(f'{doc.id} => {doc.to_dict()}') doclist += r return doclist # story gen def generate_story(choice, input_text): query = " <{0}> {1}".format(choice, input_text) generated_text = story_gen(query) generated_text = generated_text[0]['generated_text'] generated_text = generated_text.split('> ')[2] return generated_text # images gen def generate_images(text): steps=50 width=256 height=256 num_images=4 diversity=6 image_bytes = image_gen(text, steps, width, height, num_images, diversity) generated_images = [] for image in image_bytes[1]: image_str = image[0] image_str = image_str.replace("data:image/png;base64,","") decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8")) img = Image.open(io.BytesIO(decoded_bytes)) generated_images.append(img) return generated_images # reductionism - interpolate 4 images - todo - unhardcode the pattern def generate_interpolation(gallery): times_to_interpolate = 4 generated_images = [] for image_str in gallery: image_str = image_str.replace("data:image/png;base64,","") decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8")) img = Image.open(io.BytesIO(decoded_bytes)) generated_images.append(img) generated_images[0].save('frame_0.png') generated_images[1].save('frame_1.png') generated_images[2].save('frame_2.png') generated_images[3].save('frame_3.png') input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"] frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator)) mediapy.write_video("out.mp4", frames, fps=15) return "out.mp4" # image generator image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion") # video generator os.system("git clone https://github.com/google-research/frame-interpolation") sys.path.append("frame-interpolation") from eval import interpolator, util ffmpeg_path = util.get_ffmpeg_path() mediapy.set_ffmpeg(ffmpeg_path) model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") interpolator = interpolator.Interpolator(model, None) demo = gr.Blocks() with demo: audio_file = gr.inputs.Audio(source="microphone", type="filepath") text = gr.Textbox() label = gr.Label() saved = gr.Textbox() savedAll = gr.Textbox() audio = gr.Audio(label="Output", interactive=False) b1 = gr.Button("Recognize Speech") b2 = gr.Button("Classify Sentiment") b3 = gr.Button("Save Speech to Text") b4 = gr.Button("Retrieve All") input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre") input_start_text = gr.Textbox(placeholder='A teddy bear outer space', label="Starting Text") gr.Markdown("1. Select a type of story, then write some starting text! Then hit the 'Generate Story' button to generate a story! Feel free to edit the generated story afterwards!") button_gen_story = gr.Button("Generate Story") gr.Markdown("2. After generating a story, hit the 'Generate Images' button to create some visuals for your story! (Can re-run multiple times!)") button_gen_images = gr.Button("Generate Images") gr.Markdown("3. After generating some images, hit the 'Generate Video' button to create a short video by interpolating the previously generated visuals!") button_gen_video = gr.Button("Generate Video") output_generated_story = gr.Textbox(label="Generated Story") output_gallery = gr.Gallery(label="Generated Story Images") output_interpolation = gr.Video(label="Generated Video") # Bind functions to buttons button_gen_story.click(fn=generate_story, inputs=[input_story_type , input_start_text], outputs=output_generated_story) button_gen_images.click(fn=generate_images, inputs=output_generated_story, outputs=output_gallery) button_gen_video.click(fn=generate_interpolation, inputs=output_gallery, outputs=output_interpolation) b1.click(speech_to_text, inputs=audio_file, outputs=input_start_text ) b2.click(text_to_sentiment, inputs=text, outputs=label) b3.click(upsert, inputs=text, outputs=saved) b4.click(selectall, inputs=text, outputs=savedAll) demo.launch(debug=True, enable_queue=True)