import os import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceInstructEmbeddings, OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub from langchain.chat_models import ChatOpenAI load_dotenv() def update_api_token(model_choice, api_token): dotenv_file = '.env' if model_choice == "OpenAI": with open(dotenv_file, 'r') as file: lines = file.readlines() with open(dotenv_file, 'w') as file: for line in lines: if line.startswith("OPENAI_API_KEY"): file.write(f"OPENAI_API_KEY={api_token}\n") else: file.write(line) os.environ['OPENAI_API_KEY'] = api_token elif model_choice == "HuggingFace": with open(dotenv_file, 'r') as file: lines = file.readlines() with open(dotenv_file, 'w') as file: for line in lines: if line.startswith("HUGGINGFACEHUB_API_TOKEN"): file.write(f"HUGGINGFACEHUB_API_TOKEN={api_token}\n") else: file.write(line) os.environ['HUGGINGFACEHUB_API_TOKEN'] = api_token def validate_token(model_choice): if 'validation_done' not in st.session_state: try: if model_choice == "OpenAI": st.session_state.EMBEDDINGS = OpenAIEmbeddings() st.session_state.LLM = ChatOpenAI() else: st.session_state.EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") st.session_state.LLM = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature": 0.5, "max_length": 512}) st.session_state.validation_done = True return True except Exception as e: return False else: return True def get_pdf_text(pdf_docs): text = "" if pdf_docs: for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks, embeddings): vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(llm, embeddings, vectorstore=None): if llm is None or embeddings is None: raise ValueError("LLM or EMBEDDINGS is not initialized.") memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) if vectorstore is None: dummy_text = [""] vectorstore = FAISS.from_texts(texts=dummy_text, embedding=embeddings) retriever = vectorstore.as_retriever() conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): global LLM, EMBEDDINGS LLM = None EMBEDDINGS = None st.set_page_config(page_title="MultiDoc_ChatBot", page_icon=":mag:") st.write(css, unsafe_allow_html=True) st.header("Chat with multiple PDFs :mag:") # User options for LLM and Embeddings model_choice = st.radio("Choose your model source", ("OpenAI", "HuggingFace")) api_token = st.text_input("Enter your API token", type="password") if st.button("Save API Token"): update_api_token(model_choice, api_token) with st.spinner("Validating API Token..."): if validate_token(model_choice): st.success(f"{model_choice} API token saved and model uploaded!") else: st.error("Invalid API token. Please try again.") print("LLM : ", st.session_state.LLM) print("EMBEDDINGS : ", st.session_state.EMBEDDINGS) if 'LLM' in st.session_state: LLM = st.session_state.LLM if 'EMBEDDINGS' in st.session_state: EMBEDDINGS = st.session_state.EMBEDDINGS if "user_question" not in st.session_state: st.session_state.user_question = "" user_question = st.text_input("Ask a question about your documents:", key="question_input", value=st.session_state.user_question) submit_button = st.button("Submit") if submit_button and user_question: if LLM is None or EMBEDDINGS is None: st.error("LLM or EMBEDDINGS is not initialized.") else: if "conversation" not in st.session_state: st.session_state.conversation = get_conversation_chain(LLM, EMBEDDINGS) if "chat_history" not in st.session_state: st.session_state.chat_history = [] handle_userinput(user_question) st.session_state.user_question = "" with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): if LLM is None or EMBEDDINGS is None: st.error("LLM or EMBEDDINGS is not initialized.") else: with st.spinner("Processing"): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) vectorstore = get_vectorstore(text_chunks, EMBEDDINGS) st.session_state.conversation = get_conversation_chain(LLM, EMBEDDINGS, vectorstore=vectorstore) if __name__ == '__main__': main()