#from transformers import pipeline from fastapi import FastAPI app = FastAPI() #generator = pipeline('text-generation',model='Open-Orca/Mistral-7B-OpenOrca') from haystack.document_stores import InMemoryDocumentStore from haystack.utils import build_pipeline, add_example_data, print_answers # We are model agnostic :) Here, you can choose from: "anthropic", "cohere", "huggingface", and "openai". provider = "openai" API_KEY = "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" # ADD YOUR KEY HERE # We support many different databases. Here we load a simple and lightweight in-memory database. document_store = InMemoryDocumentStore(use_bm25=True) # Download and add Game of Thrones TXT articles to Haystack DocumentStore. # You can also provide a folder with your local documents. #add_example_data(document_store, "data/GoT_getting_started") add_example_data(document_store, "/content/Books") # Build a pipeline with a Retriever to get relevant documents to the query and a PromptNode interacting with LLMs using a custom prompt. pipeline = build_pipeline(provider, API_KEY, document_store) # Ask a question on the data you just added. result = pipeline.run(query="What is job yoga?") # For details, like which documents were used to generate the answer, look into the object #print_answers(result, details="medium") @app.get("/") async def root(): #return {"message": "Hello World"} #return generator('What is love',max_length=100, num_return_sequences=1) return print_answers(result, details="medium") @app.post("/predict") async def root(text): #return {"message": "Hello World"} return generator(text,max_length=100, num_return_sequences=1)