# original: #import gradio as gr #gr.Interface.load("models/sileod/deberta-v3-base-tasksource-nli").launch() # chatGPT prompt1: Rewrite this program in python and gradio to load an example file with two input text fields and output of the classification field. import gradio as gr def classify_text(text1, text2): # Load pre-trained model model = gr.load_model("models/sileod/deberta-v3-base-tasksource-nli") # Perform classification on input text output = model.predict([text1, text2])[0] return output # Create input fields input_text1 = gr.Textbox(label="Input Text 1") input_text2 = gr.Textbox(label="Input Text 2") # Create output field output_text = gr.Textbox(label="Classification Output") # Create Gradio interface gr.Interface(classify_text, inputs=[input_text1, input_text2], outputs=output_text, examples=[["Example Text 1", "Example Text 2"]]).launch()