# Imports import base64 import glob import json import math import mistune import openai import os import pytz import re import requests import streamlit as st import textract import time import zipfile from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import deque from datetime import datetime from dotenv import load_dotenv from huggingface_hub import InferenceClient from io import BytesIO from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import OpenAIEmbeddings from langchain.memory import ConversationBufferMemory from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from openai import ChatCompletion from PyPDF2 import PdfReader from templates import bot_template, css, user_template from xml.etree import ElementTree as ET # Llama Constants API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama API_KEY = os.getenv('API_KEY') headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } key = os.getenv('OPENAI_API_KEY') prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface." # page config and sidebar declares up front allow all other functions to see global class variables st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide") # UI Controls should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.") # Function to add witty and humor buttons def add_witty_humor_buttons(): with st.expander("Wit and Humor 🤣", expanded=True): # Tip about the Dromedary family st.markdown("🔬 **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.") # Define button descriptions descriptions = { "Generate Limericks 😂": "Write ten random adult limericks based on quotes that are tweet length and make you laugh 🎭", "Wise Quotes 🧙": "Generate ten wise quotes that are tweet length 🦉", "Funny Rhymes 🎤": "Create ten funny rhymes that are tweet length 🎶", "Medical Jokes 💉": "Create ten medical jokes that are tweet length 🏥", "Minnesota Humor ❄️": "Create ten jokes about Minnesota that are tweet length 🌨️", "Top Funny Stories 📖": "Create ten funny stories that are tweet length 📚", "More Funny Rhymes 🎙️": "Create ten more funny rhymes that are tweet length 🎵" } # Create columns col1, col2, col3 = st.columns([1, 1, 1], gap="small") # Add buttons to columns if col1.button("Generate Limericks 😂"): StreamLLMChatResponse(descriptions["Generate Limericks 😂"]) if col2.button("Wise Quotes 🧙"): StreamLLMChatResponse(descriptions["Wise Quotes 🧙"]) if col3.button("Funny Rhymes 🎤"): StreamLLMChatResponse(descriptions["Funny Rhymes 🎤"]) col4, col5, col6 = st.columns([1, 1, 1], gap="small") if col4.button("Medical Jokes 💉"): StreamLLMChatResponse(descriptions["Medical Jokes 💉"]) if col5.button("Minnesota Humor ❄️"): StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"]) if col6.button("Top Funny Stories 📖"): StreamLLMChatResponse(descriptions["Top Funny Stories 📖"]) col7 = st.columns(1, gap="small") if col7[0].button("More Funny Rhymes 🎙️"): StreamLLMChatResponse(descriptions["More Funny Rhymes 🎙️"]) # Function to Stream Inference Client for Inference Endpoint Responses def StreamLLMChatResponse(prompt): try: endpoint_url = API_URL hf_token = API_KEY client = InferenceClient(endpoint_url, token=hf_token) gen_kwargs = dict( max_new_tokens=512, top_k=30, top_p=0.9, temperature=0.2, repetition_penalty=1.02, stop_sequences=["\nUser:", "<|endoftext|>", ""], ) stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) report=[] res_box = st.empty() collected_chunks=[] collected_messages=[] for r in stream: if r.token.special: continue if r.token.text in gen_kwargs["stop_sequences"]: break collected_chunks.append(r.token.text) chunk_message = r.token.text collected_messages.append(chunk_message) try: report.append(r.token.text) if len(r.token.text) > 0: result="".join(report).strip() res_box.markdown(f'*{result}*') except: st.write(' ') return collected_messages except: st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') def query(payload): response = requests.post(API_URL, headers=headers, json=payload) st.markdown(response.json()) return response.json() def get_output(prompt): return query({"inputs": prompt}) def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] return f"{safe_date_time}_{safe_prompt}.{file_type}" def transcribe_audio(openai_key, file_path, model): openai.api_key = openai_key OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" headers = { "Authorization": f"Bearer {openai_key}", } with open(file_path, 'rb') as f: data = {'file': f} response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) if response.status_code == 200: st.write(response.json()) chatResponse = chat_with_model(response.json().get('text'), '') # ************************************* transcript = response.json().get('text') filename = generate_filename(transcript, 'txt') response = chatResponse user_prompt = transcript create_file(filename, user_prompt, response, should_save) return transcript else: st.write(response.json()) st.error("Error in API call.") return None def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder(key='audio_recorder') if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename return None def create_file(filename, prompt, response, should_save=True): if not should_save: return base_filename, ext = os.path.splitext(filename) has_python_code = bool(re.search(r"```python([\s\S]*?)```", response)) if ext in ['.txt', '.htm', '.md']: with open(f"{base_filename}-Prompt.txt", 'w') as file: file.write(prompt) with open(f"{base_filename}-Response.md", 'w') as file: file.write(response) if has_python_code: python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip() with open(f"{base_filename}-Code.py", 'w') as file: file.write(python_code) def truncate_document(document, length): return document[:length] def divide_document(document, max_length): return [document[i:i+max_length] for i in range(0, len(document), max_length)] def get_table_download_link(file_path): with open(file_path, 'r') as file: try: data = file.read() except: st.write('') return file_path b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] # get the file extension if ext == '.txt': mime_type = 'text/plain' elif ext == '.py': mime_type = 'text/plain' elif ext == '.xlsx': mime_type = 'text/plain' elif ext == '.csv': mime_type = 'text/plain' elif ext == '.htm': mime_type = 'text/html' elif ext == '.md': mime_type = 'text/markdown' else: mime_type = 'application/octet-stream' # general binary data type href = f'{file_name}' return href def CompressXML(xml_text): root = ET.fromstring(xml_text) for elem in list(root.iter()): if isinstance(elem.tag, str) and 'Comment' in elem.tag: elem.parent.remove(elem) return ET.tostring(root, encoding='unicode', method="xml") def read_file_content(file,max_length): if file.type == "application/json": content = json.load(file) return str(content) elif file.type == "text/html" or file.type == "text/htm": content = BeautifulSoup(file, "html.parser") return content.text elif file.type == "application/xml" or file.type == "text/xml": tree = ET.parse(file) root = tree.getroot() xml = CompressXML(ET.tostring(root, encoding='unicode')) return xml elif file.type == "text/markdown" or file.type == "text/md": md = mistune.create_markdown() content = md(file.read().decode()) return content elif file.type == "text/plain": return file.getvalue().decode() else: return "" def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'): model = model_choice conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(document_section)>0: conversation.append({'role': 'assistant', 'content': document_section}) start_time = time.time() report = [] res_box = st.empty() collected_chunks = [] collected_messages = [] for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True): collected_chunks.append(chunk) chunk_message = chunk['choices'][0]['delta'] collected_messages.append(chunk_message) content=chunk["choices"][0].get("delta",{}).get("content") try: report.append(content) if len(content) > 0: result = "".join(report).strip() res_box.markdown(f'*{result}*') except: st.write(' ') full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) st.write("Elapsed time:") st.write(time.time() - start_time) return full_reply_content def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(file_content)>0: conversation.append({'role': 'assistant', 'content': file_content}) response = openai.ChatCompletion.create(model=model_choice, messages=conversation) return response['choices'][0]['message']['content'] def extract_mime_type(file): if isinstance(file, str): pattern = r"type='(.*?)'" match = re.search(pattern, file) if match: return match.group(1) else: raise ValueError(f"Unable to extract MIME type from {file}") elif isinstance(file, streamlit.UploadedFile): return file.type else: raise TypeError("Input should be a string or a streamlit.UploadedFile object") def extract_file_extension(file): # get the file name directly from the UploadedFile object file_name = file.name pattern = r".*?\.(.*?)$" match = re.search(pattern, file_name) if match: return match.group(1) else: raise ValueError(f"Unable to extract file extension from {file_name}") def pdf2txt(docs): text = "" for file in docs: file_extension = extract_file_extension(file) st.write(f"File type extension: {file_extension}") try: if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']: text += file.getvalue().decode('utf-8') elif file_extension.lower() == 'pdf': from PyPDF2 import PdfReader pdf = PdfReader(BytesIO(file.getvalue())) for page in range(len(pdf.pages)): text += pdf.pages[page].extract_text() # new PyPDF2 syntax except Exception as e: st.write(f"Error processing file {file.name}: {e}") return text def txt2chunks(text): text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) return text_splitter.split_text(text) def vector_store(text_chunks): embeddings = OpenAIEmbeddings(openai_api_key=key) return FAISS.from_texts(texts=text_chunks, embedding=embeddings) def get_chain(vectorstore): llm = ChatOpenAI() memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) def process_user_input(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): template = user_template if i % 2 == 0 else bot_template st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) filename = generate_filename(user_question, 'txt') response = message.content user_prompt = user_question create_file(filename, user_prompt, response, should_save) def divide_prompt(prompt, max_length): words = prompt.split() chunks = [] current_chunk = [] current_length = 0 for word in words: if len(word) + current_length <= max_length: current_length += len(word) + 1 current_chunk.append(word) else: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_length = len(word) chunks.append(' '.join(current_chunk)) return chunks def create_zip_of_files(files): zip_name = "all_files.zip" with zipfile.ZipFile(zip_name, 'w') as zipf: for file in files: zipf.write(file) return zip_name def get_zip_download_link(zip_file): with open(zip_file, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() href = f'Download All' return href API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud' headers = { "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "Content-Type": "audio/wav" } def query(filename): with open(filename, "rb") as f: data = f.read() response = requests.post(API_URL_IE, headers=headers, data=data) return response.json() def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] return f"{safe_date_time}_{safe_prompt}.{file_type}" # 10. Audio recorder to Wav file: def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder() if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename # 9B. Speech transcription to file output - OPENAI Whisper def transcribe_audio(filename): output = query(filename) return output def whisper_main(): st.title("Speech to Text") st.write("Record your speech and get the text.") # Audio, transcribe, GPT: filename = save_and_play_audio(audio_recorder) if filename is not None: transcription = transcribe_audio(filename) st.write(transcription) response = StreamLLMChatResponse(transcription) filename = generate_filename(str(response), ".txt") create_file(filename, transcription, response.json(), should_save) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) def main(): st.title("AI Drome Llama") prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each." # Add Wit and Humor buttons add_witty_humor_buttons() example_input = st.text_input("Enter your example text:", value=prompt, help="Enter text to get a response from DromeLlama.") if st.button("Run Prompt With DromeLlama", help="Click to run the prompt."): try: StreamLLMChatResponse(example_input) except: st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') openai.api_key = os.getenv('OPENAI_KEY') menu = ["txt", "htm", "xlsx", "csv", "md", "py"] choice = st.sidebar.selectbox("Output File Type:", menu) model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) #filename = save_and_play_audio(audio_recorder) #if filename is not None: # transcription = transcribe_audio(key, filename, "whisper-1") # st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) # filename = None user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) collength, colupload = st.columns([2,3]) # adjust the ratio as needed with collength: max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) with colupload: uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"]) document_sections = deque() document_responses = {} if uploaded_file is not None: file_content = read_file_content(uploaded_file, max_length) document_sections.extend(divide_document(file_content, max_length)) if len(document_sections) > 0: if st.button("👁️ View Upload"): st.markdown("**Sections of the uploaded file:**") for i, section in enumerate(list(document_sections)): st.markdown(f"**Section {i+1}**\n{section}") st.markdown("**Chat with the model:**") for i, section in enumerate(list(document_sections)): if i in document_responses: st.markdown(f"**Section {i+1}**\n{document_responses[i]}") else: if st.button(f"Chat about Section {i+1}"): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, section, model_choice) st.write('Response:') st.write(response) document_responses[i] = response filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) create_file(filename, user_prompt, response, should_save) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) if st.button('💬 Chat'): st.write('Reasoning with your inputs...') user_prompt_sections = divide_prompt(user_prompt, max_length) full_response = '' for prompt_section in user_prompt_sections: response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice) full_response += response + '\n' # Combine the responses response = full_response st.write('Response:') st.write(response) filename = generate_filename(user_prompt, choice) create_file(filename, user_prompt, response, should_save) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) all_files = glob.glob("*.*") all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order if st.sidebar.button("🗑 Delete All"): for file in all_files: os.remove(file) st.experimental_rerun() if st.sidebar.button("⬇️ Download All"): zip_file = create_zip_of_files(all_files) st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) file_contents='' next_action='' for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed with col1: if st.button("🌐", key="md_"+file): # md emoji button with open(file, 'r') as f: file_contents = f.read() next_action='md' with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("📂", key="open_"+file): # open emoji button with open(file, 'r') as f: file_contents = f.read() next_action='open' with col4: if st.button("🔍", key="read_"+file): # search emoji button with open(file, 'r') as f: file_contents = f.read() next_action='search' with col5: if st.button("🗑", key="delete_"+file): os.remove(file) st.experimental_rerun() if len(file_contents) > 0: if next_action=='open': file_content_area = st.text_area("File Contents:", file_contents, height=500) if next_action=='md': st.markdown(file_contents) if next_action=='search': file_content_area = st.text_area("File Contents:", file_contents, height=500) st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, file_contents, model_choice) filename = generate_filename(file_contents, choice) create_file(filename, user_prompt, response, should_save) st.experimental_rerun() # Feedback # Step: Give User a Way to Upvote or Downvote feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote")) if feedback == "👍 Upvote": st.write("You upvoted 👍. Thank you for your feedback!") else: st.write("You downvoted 👎. Thank you for your feedback!") load_dotenv() st.write(css, unsafe_allow_html=True) st.header("Chat with documents :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: process_user_input(user_question) with st.sidebar: st.subheader("Your documents") docs = st.file_uploader("import documents", accept_multiple_files=True) with st.spinner("Processing"): raw = pdf2txt(docs) if len(raw) > 0: length = str(len(raw)) text_chunks = txt2chunks(raw) vectorstore = vector_store(text_chunks) st.session_state.conversation = get_chain(vectorstore) st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing filename = generate_filename(raw, 'txt') create_file(filename, raw, '', should_save) if __name__ == "__main__": whisper_main() main()