import streamlit as st import firebase_admin from firebase_admin import credentials from firebase_admin import firestore import datetime from transformers import pipeline import gradio as gr @st.experimental_singleton def get_db_firestore(): cred = credentials.Certificate('test.json') firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',}) db = firestore.client() return db def upsertoftheminute(collection, document, firefield, first, last, born): date_time =str(datetime.datetime.today()).split()[0] doc_ref = db.collection(collection).document(document) doc_ref.set({u'firefield': firefield, u'first': first, u'last': last, u'born': date_time,}) def selectCollectionDocument(collection, document): doc_ref = db.collection(collection).document(document) doc = doc_ref.get() st.write("The id is: ", doc.id) st.write("The contents are: ", doc.to_dict()) db = get_db_firestore() upsertoftheminute(u'TimeSeries', u'DocumentofMinute', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', u'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', 2022) selectCollectionDocument(u"TimeSeries", u"DocumentofMinute") asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") def transcribe(audio): text = asr(audio)["text"] return text #gr.Interface( # fn=transcribe, # inputs=gr.inputs.Audio(source="microphone", type="filepath"), # outputs="text").launch() classifier = pipeline("text-classification") def speech_to_text(speech): text = asr(speech)["text"] upsertoftheminute(u'TimeSeries', u'DocumentofMinuteText', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', text, 2022) return text def text_to_sentiment(text): sentiment = classifier(text)[0]["label"] upsertoftheminute(u'TimeSeries', u'DocumentofMinuteSentiment', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', sentiment, 2022) return sentiment demo = gr.Blocks() with demo: #audio_file = gr.Audio(type="filepath") audio_file = gr.inputs.Audio(source="microphone", type="filepath") text = gr.Textbox() label = gr.Label() b1 = gr.Button("Recognize Speech") b2 = gr.Button("Classify Sentiment") b1.click(speech_to_text, inputs=audio_file, outputs=text) b2.click(text_to_sentiment, inputs=text, outputs=label) demo.launch()