import streamlit as st import firebase_admin from firebase_admin import credentials from firebase_admin import firestore import datetime from transformers import pipeline import gradio as gr @st.experimental_singleton def get_db_firestore(): cred = credentials.Certificate('test.json') firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',}) db = firestore.client() return db db = get_db_firestore() asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") def transcribe(audio): text = asr(audio)["text"] return text classifier = pipeline("text-classification") def speech_to_text(speech): text = asr(speech)["text"] return text def text_to_sentiment(text): sentiment = classifier(text)[0]["label"] return sentiment def upsert(text): date_time =str(datetime.datetime.today()) doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time) doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,}) saved = select('Text2SpeechSentimentSave', date_time) # check it here: https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces return saved def select(collection, document): doc_ref = db.collection(collection).document(document) doc = doc_ref.get() docid = ("The id is: ", doc.id) contents = ("The contents are: ", doc.to_dict()) return contents def selectall(text): docs = db.collection('Text2SpeechSentimentSave').stream() doclist='' for doc in docs: #docid=doc.id #dict=doc.to_dict() #doclist+=doc.to_dict() r=(f'{doc.id} => {doc.to_dict()}') doclist += r return doclist demo = gr.Blocks() with demo: #audio_file = gr.Audio(type="filepath") audio_file = gr.inputs.Audio(source="microphone", type="filepath") text = gr.Textbox() label = gr.Label() saved = gr.Textbox() savedAll = gr.Textbox() b1 = gr.Button("Recognize Speech") b2 = gr.Button("Classify Sentiment") b3 = gr.Button("Save Speech to Text") b4 = gr.Button("Retrieve All") b1.click(speech_to_text, inputs=audio_file, outputs=text) b2.click(text_to_sentiment, inputs=text, outputs=label) b3.click(upsert, inputs=text, outputs=saved) b4.click(selectall, inputs=text, outputs=savedAll) demo.launch(share=True)