import time # to simulate a real time data, time loop import numpy as np # np mean, np random import pandas as pd # read csv, df manipulation import plotly.express as px # interactive charts import streamlit as st # 🎈 data web app development st.set_page_config( page_title="Real-Time Data Science Dashboard", page_icon="✅", layout="wide", ) # read csv from a github repo dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv" # read csv from a URL @st.experimental_memo def get_data() -> pd.DataFrame: return pd.read_csv(dataset_url) df = get_data() # dashboard title st.title("Real-Time / Live Data Science Dashboard") # top-level filters job_filter = st.selectbox("Select the Job", pd.unique(df["job"])) # creating a single-element container placeholder = st.empty() # dataframe filter df = df[df["job"] == job_filter] # near real-time / live feed simulation for seconds in range(200): df["age_new"] = df["age"] * np.random.choice(range(1, 5)) df["balance_new"] = df["balance"] * np.random.choice(range(1, 5)) # creating KPIs avg_age = np.mean(df["age_new"]) count_married = int( df[(df["marital"] == "married")]["marital"].count() + np.random.choice(range(1, 30)) ) balance = np.mean(df["balance_new"]) with placeholder.container(): # create three columns kpi1, kpi2, kpi3 = st.columns(3) # fill in those three columns with respective metrics or KPIs kpi1.metric( label="Age ⏳", value=round(avg_age), delta=round(avg_age) - 10, ) kpi2.metric( label="Married Count 💍", value=int(count_married), delta=-10 + count_married, ) kpi3.metric( label="A/C Balance $", value=f"$ {round(balance,2)} ", delta=-round(balance / count_married) * 100, ) # create two columns for charts fig_col1, fig_col2 = st.columns(2) with fig_col1: st.markdown("### First Chart") fig = px.density_heatmap( data_frame=df, y="age_new", x="marital" ) st.write(fig) with fig_col2: st.markdown("### Second Chart") fig2 = px.histogram(data_frame=df, x="age_new") st.write(fig2) st.markdown("### Detailed Data View") st.dataframe(df) time.sleep(1)