import streamlit as st import pandas as pd import numpy as np import altair as alt import pydeck as pdk import random from pytz import country_names from st_aggrid import AgGrid, GridUpdateMode, JsCode from st_aggrid.grid_options_builder import GridOptionsBuilder import snowflake.connector from snowflake.connector.pandas_tools import write_pandas from snowflake.connector import connect # callback to update query param on selectbox change def update_params(): st.experimental_set_query_params(option=st.session_state.qp) options = ["cat", "dog", "mouse", "bat", "duck"] query_params = st.experimental_get_query_params() # set selectbox value based on query param, or provide a default ix = 0 if query_params: try: ix = options.index(query_params['option'][0]) except ValueError: pass selected_option = st.radio( "Param", options, index=ix, key="qp", on_change=update_params ) # set query param based on selection st.experimental_set_query_params(option=selected_option) # display for debugging purposes st.write('---', st.experimental_get_query_params()) # SETTING PAGE CONFIG TO WIDE MODE AND ADDING A TITLE AND FAVICON #st.set_page_config(layout="wide", page_title="NYC Ridesharing Demo", page_icon=":taxi:") # LOAD DATA ONCE @st.experimental_singleton def load_data(): data = pd.read_csv( "./uber-raw-data-sep14.csv.gz", nrows=100000, # approx. 10% of data names=[ "date/time", "lat", "lon", ], # specify names directly since they don't change skiprows=1, # don't read header since names specified directly usecols=[0, 1, 2], # doesn't load last column, constant value "B02512" parse_dates=[ "date/time" ], # set as datetime instead of converting after the fact ) return data # FUNCTION FOR AIRPORT MAPS def map(data, lat, lon, zoom): st.write( pdk.Deck( map_style="mapbox://styles/mapbox/light-v9", initial_view_state={ "latitude": lat, "longitude": lon, "zoom": zoom, "pitch": 50, }, layers=[ pdk.Layer( "HexagonLayer", data=data, get_position=["lon", "lat"], radius=100, elevation_scale=4, elevation_range=[0, 1000], pickable=True, extruded=True, ), ], ) ) # FILTER DATA FOR A SPECIFIC HOUR, CACHE @st.experimental_memo def filterdata(df, hour_selected): return df[df["date/time"].dt.hour == hour_selected] # CALCULATE MIDPOINT FOR GIVEN SET OF DATA @st.experimental_memo def mpoint(lat, lon): return (np.average(lat), np.average(lon)) # FILTER DATA BY HOUR @st.experimental_memo def histdata(df, hr): filtered = data[ (df["date/time"].dt.hour >= hr) & (df["date/time"].dt.hour < (hr + 1)) ] hist = np.histogram(filtered["date/time"].dt.minute, bins=60, range=(0, 60))[0] return pd.DataFrame({"minute": range(60), "pickups": hist}) # STREAMLIT APP LAYOUT data = load_data() # LAYING OUT THE TOP SECTION OF THE APP row1_1, row1_2 = st.columns((2, 3)) with row1_1: st.title("NYC Uber Ridesharing Data") hour_selected = st.slider("Select hour of pickup", 0, 23) with row1_2: st.write( """ ## Examining how Uber pickups vary over time in New York City's and at its major regional airports. By sliding the slider on the left you can view different slices of time and explore different transportation trends. """ ) # LAYING OUT THE MIDDLE SECTION OF THE APP WITH THE MAPS row2_1, row2_2, row2_3, row2_4 = st.columns((2, 1, 1, 1)) # SETTING THE ZOOM LOCATIONS FOR THE AIRPORTS la_guardia = [40.7900, -73.8700] jfk = [40.6650, -73.7821] newark = [40.7090, -74.1805] zoom_level = 12 midpoint = mpoint(data["lat"], data["lon"]) with row2_1: st.write( f"""**All New York City from {hour_selected}:00 and {(hour_selected + 1) % 24}:00**""" ) map(filterdata(data, hour_selected), midpoint[0], midpoint[1], 11) with row2_2: st.write("**La Guardia Airport**") map(filterdata(data, hour_selected), la_guardia[0], la_guardia[1], zoom_level) with row2_3: st.write("**JFK Airport**") map(filterdata(data, hour_selected), jfk[0], jfk[1], zoom_level) with row2_4: st.write("**Newark Airport**") map(filterdata(data, hour_selected), newark[0], newark[1], zoom_level) # CALCULATING DATA FOR THE HISTOGRAM chart_data = histdata(data, hour_selected) # LAYING OUT THE HISTOGRAM SECTION st.write( f"""**Breakdown of rides per minute between {hour_selected}:00 and {(hour_selected + 1) % 24}:00**""" ) st.altair_chart( alt.Chart(chart_data) .mark_area( interpolate="step-after", ) .encode( x=alt.X("minute:Q", scale=alt.Scale(nice=False)), y=alt.Y("pickups:Q"), tooltip=["minute", "pickups"], ) .configure_mark(opacity=0.2, color="red"), use_container_width=True, ) @st.experimental_memo def foo(x): return x**2 if st.button("Clear Foo"): # Clear foo's memoized values: foo.clear() if st.button("Clear All"): # Clear values from *all* memoized functions: st.experimental_memo.clear()