import time import re import pandas as pd import numpy as np import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel from tokenizers import Tokenizer, AddedToken import streamlit as st from st_click_detector import click_detector # This lil dealio is my test of the new experiemntal primitives which promise to put cach in streamlit within striking distance of simulating cognitive episodic memory (personalized feelings about a moment through space time), and semantic memory (factual memories we are ready to share and communicate like your email address or physical address yo # What impresses me about these two beautiful new prims is that one called the singleton can share memory across sessions (think all users yo) @st.experimental_singleton def get_sessionmaker(search_param): # This is for illustration purposes only url = "https://en.wikipedia.org/wiki/" #engine = create_engine(DB_URL) #return sessionmaker(engine) return url search_param = "Star_Trek:_Discovery" sm= get_sessionmaker(search_param) #print(sm) # What is supercool about the second prim the memo is it makes unwieldy data very wieldy. Like the Lord of Rings in reverse re "you cannot wield it! none of us can." -> "You can wield it, now everyone can." @st.experimental_memo def factorial(n): if n < 1: return 1 return n * factorial(n - 1) #em10 = factorial(10) #print("em10:",em10) #em09 = factorial(9) # Returns instantly! #print("em09:",em09) # callback to update query param on selectbox change def update_params(): try: #st.experimental_set_query_params(option=st.session_state.query) except ValueError: pass # radio button options - plan is to hydrate when selected and change url along with textbox and search options = ["ai", "nlp", "iot", "vr", "genomics", "graph", "cognitive"] query_params = st.experimental_get_query_params() # set selectbox value based on query param, or provide a default ix = 0 if query_params: try: ix = options.index(query_params['query'][0]) except ValueError: pass selected_option = st.radio( "Param", options, index=ix, key="query", on_change=update_params ) # set query param based on selection st.experimental_set_query_params(option=selected_option) # second set of controls, check the query params try: query_params = st.experimental_get_query_params() query_option = query_params['query'][0] #throws an exception when visiting http://host:port option_selected = st.sidebar.selectbox('Pick option', options, index=options.index(query_option)) except: # catch exception and set query param to predefined value st.experimental_set_query_params(query="Genomics") # set default query_params = st.experimental_get_query_params() query_option = query_params['query'][0] if 'query' not in st.session_state: #st.session_state['query'] = 'value' query = st.text_input("", value="artificial intelligence", key="query") else: query = st.text_input("", value=st.session_state["query"], key="query") st.session_state.query = query # if set already above. this prevents two interface elements setting it first time once if 'query' not in st.session_state: st.session_state.query = 'Genomics' st.write(st.session_state.query) DEVICE = "cpu" MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"] DESCRIPTION = """ # Semantic search **Enter your query and hit enter** Built with 🤗 Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset) """ # Session state if 'key' not in st.session_state: st.session_state['key'] = 'value' if 'key' not in st.session_state: st.session_state.key = 'value' st.write(st.session_state.key) st.write(st.session_state) #st.session_state for key in st.session_state.keys(): del st.session_state[key] #st.text_input("Your name", key="name") #st.session_state.name @st.cache( show_spinner=False, hash_funcs={ AutoModel: lambda _: None, AutoTokenizer: lambda _: None, dict: lambda _: None, }, ) def load(): models, tokenizers, embeddings = [], [], [] for model_option in MODEL_OPTIONS: tokenizers.append( AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}") ) models.append( AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to( DEVICE ) ) embeddings.append(np.load("embeddings.npy")) embeddings.append(np.load("embeddings2.npy")) df = pd.read_csv("movies.csv") return tokenizers, models, embeddings, df tokenizers, models, embeddings, df = load() def pooling(model_output): return model_output.last_hidden_state[:, 0] def compute_embeddings(texts): encoded_input = tokenizers[0]( texts, padding=True, truncation=True, return_tensors="pt" ).to(DEVICE) with torch.no_grad(): model_output = models[0](**encoded_input, return_dict=True) embeddings = pooling(model_output) return embeddings.cpu().numpy() def pooling2(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) def compute_embeddings2(list_of_strings): encoded_input = tokenizers[1]( list_of_strings, padding=True, truncation=True, return_tensors="pt" ).to(DEVICE) with torch.no_grad(): model_output = models[1](**encoded_input) sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"]) return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy() @st.cache( show_spinner=False, hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None}, ) def semantic_search(query, model_id): start = time.time() if len(query.strip()) == 0: return "" if "[Similar:" not in query: if model_id == 0: query_embedding = compute_embeddings([query]) else: query_embedding = compute_embeddings2([query]) else: match = re.match(r"\[Similar:(\d{1,5}).*", query) if match: idx = int(match.groups()[0]) query_embedding = embeddings[model_id][idx : idx + 1, :] if query_embedding.shape[0] == 0: return "" else: return "" indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[ -1:-11:-1 ] if len(indices) == 0: return "" result = "
    " for i in indices: result += f"
  1. {df.iloc[i].title} ({df.iloc[i].release_date}). {df.iloc[i].overview} " result += f"Similar movies
  2. " delay = "%.3f" % (time.time() - start) return f"

    Computation time: {delay} seconds

    {result}
" st.sidebar.markdown(DESCRIPTION) model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS) model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1 clicked = click_detector(semantic_search(query, model_id)) if clicked != "": st.markdown(clicked) change_query = False if "last_clicked" not in st.session_state: st.session_state["last_clicked"] = clicked change_query = True else: if clicked != st.session_state["last_clicked"]: st.session_state["last_clicked"] = clicked change_query = True if change_query: st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}" st.experimental_rerun()