import streamlit as st import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict, deque from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET from openai import OpenAI import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # 🔧 Config & Setup st.set_page_config( page_title="🚲BikeAI🏆 Claude/GPT Research", page_icon="🚲🏆", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲BikeAI🏆 Claude/GPT Research AI" } ) load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') or st.secrets['OPENAI_API_KEY'] anthropic_key = os.getenv("ANTHROPIC_API_KEY_3") or st.secrets["ANTHROPIC_API_KEY"] claude_client = anthropic.Anthropic(api_key=anthropic_key) openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) HF_KEY = os.getenv('HF_KEY') API_URL = os.getenv('API_URL') # Session states st.session_state.setdefault('transcript_history', []) st.session_state.setdefault('chat_history', []) st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13") st.session_state.setdefault('messages', []) st.session_state.setdefault('last_voice_input', "") st.session_state.setdefault('editing_file', None) st.session_state.setdefault('edit_new_name', "") st.session_state.setdefault('edit_new_content', "") st.session_state.setdefault('should_rerun', False) # Flag to indicate we need to rerun after operations # 🎨 Minimal Custom CSS st.markdown(""" """, unsafe_allow_html=True) FILE_EMOJIS = { "md": "📝", "mp3": "🎵", } def generate_filename(prompt, file_type="md"): ctz = pytz.timezone('US/Central') date_str = datetime.now(ctz).strftime("%m%d_%H%M") safe = re.sub(r'[<>:"/\\\\|?*\n]', ' ', prompt) safe = re.sub(r'\s+', ' ', safe).strip()[:90] return f"{date_str}_{safe}.{file_type}" def create_file(filename, prompt, response): with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) st.session_state.should_rerun = True def get_download_link(file): with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'📂 Download {os.path.basename(file)}' @st.cache_resource def speech_synthesis_html(result): html_code = f"""
""" components.html(html_code, height=0) async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text,"mp3") await communicate.save(out_fn) st.session_state.should_rerun = True return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): if file_path and os.path.exists(file_path): st.audio(file_path) st.markdown(get_download_link(file_path), unsafe_allow_html=True) def process_image(image_path, user_prompt): with open(image_path, "rb") as imgf: image_data = imgf.read() b64img = base64.b64encode(image_data).decode("utf-8") resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "text", "text": user_prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} ]} ], temperature=0.0, ) return resp.choices[0].message.content def process_audio(audio_path): with open(audio_path, "rb") as f: transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) st.session_state.messages.append({"role": "user", "content": transcription.text}) st.session_state.should_rerun = True return transcription.text def process_video(video_path, seconds_per_frame=1): vid = cv2.VideoCapture(video_path) total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vid.get(cv2.CAP_PROP_FPS) skip = int(fps*seconds_per_frame) frames_b64 = [] for i in range(0, total, skip): vid.set(cv2.CAP_PROP_POS_FRAMES, i) ret, frame = vid.read() if not ret: break _, buf = cv2.imencode(".jpg", frame) frames_b64.append(base64.b64encode(buf).decode("utf-8")) vid.release() return frames_b64 def process_video_with_gpt(video_path, prompt): frames = process_video(video_path) resp = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role":"system","content":"Analyze video frames."}, {"role":"user","content":[ {"type":"text","text":prompt}, *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] ]} ] ) return resp.choices[0].message.content def search_arxiv(query): st.write("🔍 Searching ArXiv...") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm") st.markdown("### Mistral-8x7B-Instruct-v0.1 Result") st.markdown(r1) r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm") st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(r2) return f"{r1}\n\n{r2}" def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True): start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md") refs = r[0] r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") result = f"### 🔎 {q}\n\n{r2}\n\n{refs}" st.markdown(result) if vocal_summary: audio_file_main = speak_with_edge_tts(r2, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### 🎙️ Vocal Summary (Short Answer)") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Here are the summaries from the references: " + refs.replace('"','') audio_file_refs = speak_with_edge_tts(summaries_text, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### 📜 Extended References & Summaries") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Here are the titles of the papers: " + ", ".join(titles) audio_file_titles = speak_with_edge_tts(titles_text, voice="en-US-AriaNeural", rate=0, pitch=0) st.write("### 🔖 Paper Titles") play_and_download_audio(audio_file_titles) elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") fn = generate_filename(q,"md") create_file(fn,q,result) return result def process_with_gpt(text): if not text: return st.session_state.messages.append({"role":"user","content":text}) with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): c = openai_client.chat.completions.create( model=st.session_state["openai_model"], messages=st.session_state.messages, stream=False ) ans = c.choices[0].message.content st.write("GPT-4o: " + ans) create_file(generate_filename(text,"md"),text,ans) st.session_state.messages.append({"role":"assistant","content":ans}) return ans def process_with_claude(text): if not text: return with st.chat_message("user"): st.markdown(text) with st.chat_message("assistant"): r = claude_client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role":"user","content":text}] ) ans = r.content[0].text st.write("Claude: " + ans) create_file(generate_filename(text,"md"),text,ans) st.session_state.chat_history.append({"user":text,"claude":ans}) return ans def create_zip_of_files(): md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") all_files = md_files + mp3_files zip_name = "all_files.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) st.session_state.should_rerun = True return zip_name def get_media_html(p,typ="video",w="100%"): d = base64.b64encode(open(p,'rb').read()).decode() if typ=="video": return f'' else: return f'' def load_files_for_sidebar(): # Gather all md and mp3 files md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") files_by_ext = defaultdict(list) for f in md_files: files_by_ext['md'].append(f) for f in mp3_files: files_by_ext['mp3'].append(f) # Sort each extension group by modification time descending for ext in files_by_ext: files_by_ext[ext].sort(key=lambda x: os.path.getmtime(x), reverse=True) return files_by_ext def display_file_manager_sidebar(files_by_ext): st.sidebar.title("🎵 Audio & Document Manager") md_files = files_by_ext.get('md', []) mp3_files = files_by_ext.get('mp3', []) # Delete all buttons col_del = st.sidebar.columns(2) with col_del[0]: if st.button("🗑 Delete All MD"): for f in md_files: os.remove(f) st.session_state.should_rerun = True with col_del[1]: if st.button("🗑 Delete All MP3"): for f in mp3_files: os.remove(f) st.session_state.should_rerun = True # Sort extensions by number of files descending ext_counts = {ext: len(files) for ext, files in files_by_ext.items()} sorted_ext = sorted(files_by_ext.keys(), key=lambda x: ext_counts[x], reverse=True) # Display groups for ext in sorted_ext: emoji = FILE_EMOJIS.get(ext, "📦") count = len(files_by_ext[ext]) with st.sidebar.expander(f"{emoji} {ext.upper()} Files ({count})"): for f in files_by_ext[ext]: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") col1, col2, col3, col4 = st.columns([2,1,1,1]) with col1: st.write(f"**{fname}** - {ctime}") with col2: # View button if ext == "md": if st.button("👀", key="view_"+f): content = open(f,'r',encoding='utf-8').read() st.write("**Viewing file content:**") st.markdown(content) else: # mp3 if st.button("👀", key="view_"+f): st.write(f"Playing: {fname}") st.audio(f) with col3: # Edit button for MD if ext == "md": if st.button("✏️", key="edit_"+f): st.session_state.editing_file = f st.session_state.edit_new_name = fname.replace(".md","") st.session_state.edit_new_content = open(f,'r',encoding='utf-8').read() st.session_state.should_rerun = True else: pass with col4: # Delete button if st.button("🗑", key="del_"+f): os.remove(f) st.session_state.should_rerun = True # Download all as zip if (len(md_files) > 0 or len(mp3_files) > 0) and st.sidebar.button("⬇️ Download All (.md and .mp3)"): z = create_zip_of_files() st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) # If editing an md file if st.session_state.editing_file and os.path.exists(st.session_state.editing_file): st.sidebar.subheader(f"Editing: {os.path.basename(st.session_state.editing_file)}") st.session_state.edit_new_name = st.sidebar.text_input("New name (without extension):", value=st.session_state.edit_new_name) st.session_state.edit_new_content = st.sidebar.text_area("Content:", st.session_state.edit_new_content, height=200) c1,c2 = st.sidebar.columns(2) with c1: if st.button("Save Changes"): old_path = st.session_state.editing_file new_path = st.session_state.edit_new_name + ".md" if new_path != os.path.basename(old_path): os.rename(old_path, new_path) with open(new_path,'w',encoding='utf-8') as f: f.write(st.session_state.edit_new_content) st.session_state.editing_file = None st.session_state.should_rerun = True with c2: if st.button("Cancel"): st.session_state.editing_file = None st.session_state.should_rerun = True def main(): st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research AI") tab_main = st.radio("Action:",["🎤 Voice Input","📸 Media Gallery","🔍 Search ArXiv","📝 File Editor"],horizontal=True) model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0) # Main Input Component mycomponent = components.declare_component("mycomponent", path="mycomponent") val = mycomponent(my_input_value="Hello") if val: user_input = val.strip() if user_input: if model_choice == "GPT-4o": process_with_gpt(user_input) elif model_choice == "Claude-3": process_with_claude(user_input) elif model_choice == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) else: col1,col2,col3=st.columns(3) with col1: st.subheader("GPT-4o Omni:") try: process_with_gpt(user_input) except: st.write('GPT 4o error') with col2: st.subheader("Claude-3 Sonnet:") try: process_with_claude(user_input) except: st.write('Claude error') with col3: st.subheader("Arxiv + Mistral:") try: perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True) except: st.write("Arxiv error") if tab_main == "🔍 Search ArXiv": st.subheader("🔍 Search ArXiv") q=st.text_input("Research query:") # 🎛️ Audio Generation Options st.markdown("### 🎛️ Audio Generation Options") vocal_summary = st.checkbox("🎙️ Vocal Summary (Short Answer)", value=True) extended_refs = st.checkbox("📜 Extended References & Summaries (Long)", value=False) titles_summary = st.checkbox("🔖 Paper Titles Only", value=True) if q: q = q.strip() if q and st.button("Run ArXiv Query"): r = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary) st.markdown(r) elif tab_main == "🎤 Voice Input": st.subheader("🎤 Voice Recognition") user_text = st.text_area("Message:", height=100) user_text = user_text.strip() if st.button("Send 📨"): if user_text: if model_choice == "GPT-4o": process_with_gpt(user_text) elif model_choice == "Claude-3": process_with_claude(user_text) elif model_choice == "Arxiv": st.subheader("Arxiv Only Results:") perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True) else: col1,col2,col3=st.columns(3) with col1: st.subheader("GPT-4o Omni:") process_with_gpt(user_text) with col2: st.subheader("Claude-3 Sonnet:") process_with_claude(user_text) with col3: st.subheader("Arxiv & Mistral:") res = perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True) st.markdown(res) st.subheader("📜 Chat History") t1,t2=st.tabs(["Claude History","GPT-4o History"]) with t1: for c in st.session_state.chat_history: st.write("**You:**", c["user"]) st.write("**Claude:**", c["claude"]) with t2: for m in st.session_state.messages: with st.chat_message(m["role"]): st.markdown(m["content"]) elif tab_main == "📸 Media Gallery": st.header("🎬 Media Gallery - Images and Videos") tabs = st.tabs(["🖼️ Images", "🎥 Video"]) with tabs[0]: imgs = glob.glob("*.png")+glob.glob("*.jpg") if imgs: c = st.slider("Cols",1,5,3) cols = st.columns(c) for i,f in enumerate(imgs): with cols[i%c]: st.image(Image.open(f),use_container_width=True) if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"): a = process_image(f,"Describe this image.") st.markdown(a) else: st.write("No images found.") with tabs[1]: vids = glob.glob("*.mp4") if vids: for v in vids: with st.expander(f"🎥 {os.path.basename(v)}"): st.markdown(get_media_html(v,"video"),unsafe_allow_html=True) if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): a = process_video_with_gpt(v,"Describe video.") st.markdown(a) else: st.write("No videos found.") elif tab_main == "📝 File Editor": # Existing code for inline editing if needed if getattr(st.session_state,'current_file',None): st.subheader(f"Editing: {st.session_state.current_file}") new_text = st.text_area("Content:", st.session_state.file_content, height=300) if st.button("Save"): with open(st.session_state.current_file,'w',encoding='utf-8') as f: f.write(new_text) st.success("Updated!") st.session_state.should_rerun = True else: st.write("Select a file from the sidebar to edit.") # After all main content is processed, load files and display in sidebar files_by_ext = load_files_for_sidebar() display_file_manager_sidebar(files_by_ext) # If we performed an operation, rerun now at the end if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()