import torch import gradio as gr from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds #torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/35-Favorite-Games.jpg', '35-Favorite-Games.jpg') #result = predict_step(['35-Favorite-Games.jpg']) def predict(image,max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(image, max_length = max_length)[0] caption_text = clean_text(tokenizer.decode(caption_ids)) return caption_text description= "NLP Image Understanding" title = "NLP Image Understanding" article = "nlpconnect vit-gpt2-image-captioning" input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) output = gr.outputs.Textbox(type="auto",label="Captions") #examples = [['35-Favorite-Games.jpg']] examples = [f"{i}.jpg" for i in range(1,20)] interface = gr.Interface( fn=predict, inputs = input, outputs=output, examples = examples, title=title, description=description, article = article, ) interface.launch()