Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
st.title("HuggingFace Model Loader & Saver")
|
| 6 |
+
st.write("Load a model from HuggingFace and save it locally. Edit parameters below:")
|
| 7 |
+
|
| 8 |
+
# Editable parameters
|
| 9 |
+
model_name = st.text_input("Model Name", value="openai-gpt", help="Enter the HuggingFace model name (e.g., openai-gpt)")
|
| 10 |
+
save_dir = st.text_input("Save Directory", value="./hugging", help="Local directory to save the model")
|
| 11 |
+
additional_models = st.multiselect(
|
| 12 |
+
"Additional Models",
|
| 13 |
+
options=["bert-base-uncased", "gpt2", "roberta-base"],
|
| 14 |
+
help="Select additional models to load and save"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
if st.button("Load and Save Model"):
|
| 18 |
+
st.write("### Processing Primary Model")
|
| 19 |
+
try:
|
| 20 |
+
st.write(f"Loading **{model_name}** ...")
|
| 21 |
+
model = AutoModel.from_pretrained(model_name)
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
# Ensure a safe folder name (replace / if necessary)
|
| 24 |
+
model_save_path = os.path.join(save_dir, model_name.replace("/", "_"))
|
| 25 |
+
os.makedirs(model_save_path, exist_ok=True)
|
| 26 |
+
model.save_pretrained(model_save_path)
|
| 27 |
+
st.success(f"Model **{model_name}** saved to `{model_save_path}`")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
st.error(f"Error loading/saving model **{model_name}**: {e}")
|
| 30 |
+
|
| 31 |
+
if additional_models:
|
| 32 |
+
st.write("### Processing Additional Models")
|
| 33 |
+
for m in additional_models:
|
| 34 |
+
try:
|
| 35 |
+
st.write(f"Loading **{m}** ...")
|
| 36 |
+
model = AutoModel.from_pretrained(m)
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(m)
|
| 38 |
+
model_save_path = os.path.join(save_dir, m.replace("/", "_"))
|
| 39 |
+
os.makedirs(model_save_path, exist_ok=True)
|
| 40 |
+
model.save_pretrained(model_save_path)
|
| 41 |
+
st.success(f"Model **{m}** saved to `{model_save_path}`")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
st.error(f"Error loading/saving model **{m}**: {e}")
|