import streamlit as st from datasets import load_dataset import streamlit.components.v1 as components # Load the dataset dataset = load_dataset("awacke1/DatasetOfDatasetsUSA") # Initialize session state for record navigation if 'index' not in st.session_state: st.session_state.index = 0 # Define the maximum index as the length of the dataset - 1 max_index = len(dataset['train']) - 1 # Navigation buttons col1, col2, col3, col4, col5 = st.columns(5) with col1: if st.button('⏮️'): st.session_state.index = 0 with col2: if st.button('◀️') and st.session_state.index > 0: st.session_state.index -= 1 with col3: st.write(f"Record {st.session_state.index + 1} of {max_index + 1}") with col4: if st.button('▶️') and st.session_state.index < max_index: st.session_state.index += 1 with col5: if st.button('⏭️'): st.session_state.index = max_index # Assuming the dataset has the columns 'cityOrState', 'link', and 'linkType' item = dataset['train'][st.session_state.index] cityOrState = item['cityOrState'] link = item['link'] linkType = item['linkType'] # Build the HTML for the current record links_html = f"""
""" # Use Streamlit components to render the HTML components.html(links_html, height=100)