import streamlit as st import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # -------------------- Configuration -------------------- st.set_page_config( page_title="🚲CCCGπŸ† Code Competition Claude vs GPT", page_icon="πŸš²πŸ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲CCCGπŸ† Code Competition Claude vs GPT" } ) load_dotenv() USER_NAMES = [ "Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William" ] ENGLISH_VOICES = [ "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural", "en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural", "en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural" ] USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES)) if 'user_name' not in st.session_state: st.session_state['user_name'] = USER_NAMES[0] if 'old_val' not in st.session_state: st.session_state['old_val'] = None if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False FILE_EMOJIS = { "md": "πŸ“", "mp3": "🎡", } def get_high_info_terms(text: str) -> list: # Expanded stop words stop_words = set([ 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while' ]) # Key phrases tailored to your interests key_phrases = [ 'artificial intelligence', 'machine learning', 'deep learning', 'neural networks', 'natural language processing', 'healthcare systems', 'clinical medicine', 'genomics', 'biological systems', 'cognitive science', 'data visualization', 'wellness technology', 'robotics', 'medical imaging', 'semantic understanding', 'transformers', 'large language models', 'empirical studies', 'scientific research', 'quantum mechanics', 'biomedical engineering', 'computational biology' ] # Preserve key phrases and remove them from the text preserved_phrases = [] lower_text = text.lower() for phrase in key_phrases: if phrase in lower_text: preserved_phrases.append(phrase) text = text.replace(phrase, '') break # Stop after the first matching key phrase # Extract words and filter high-info terms words = re.findall(r'\b\w+(?:-\w+)*\b', text) high_info_words = [ word.lower() for word in words if len(word) > 3 and word.lower() not in stop_words and not word.isdigit() and any(c.isalpha() for c in word) ] # Combine preserved phrases and filtered words, ensuring uniqueness unique_terms = [] seen = set() for term in preserved_phrases + high_info_words: if term not in seen: seen.add(term) unique_terms.append(term) # Return only the top 5 terms return unique_terms[:5] def clean_text_for_filename(text: str) -> str: text = text.lower() text = re.sub(r'[^\w\s-]', '', text) words = text.split() stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) filtered = [w for w in words if len(w)>3 and w not in stop_short] return '_'.join(filtered)[:200] def generate_filename(prompt, response, file_type="md"): # Adjust timezone to Central Time central_tz = pytz.timezone('America/Chicago') central_time = datetime.now(central_tz) # Format the prefix to include the required format prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_") # e.g., 12-20-24_11-34-AM_ combined = (prompt + " " + response).strip() info_terms = get_high_info_terms(combined) snippet = (prompt[:100] + " " + response[:100]).strip() snippet_cleaned = clean_text_for_filename(snippet) name_parts = info_terms + [snippet_cleaned] full_name = '_'.join(name_parts) if len(full_name) > 150: full_name = full_name[:150] filename = f"{prefix}{full_name}.{file_type}" return filename def create_file(prompt, response, file_type="md"): filename = generate_filename(prompt.strip(), response.strip(), file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file): with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'πŸ“‚ Download {os.path.basename(file)}' def clean_for_speech(text: str) -> str: text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, text, "mp3") try: await communicate.save(out_fn) except edge_tts.exceptions.NoAudioReceived: st.error("No audio was received from TTS service.") return None return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) def load_files_for_sidebar(): md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files groups = defaultdict(list) for f in all_files: fname = os.path.basename(f) prefix = fname[:17] groups[prefix].append(f) for prefix in groups: groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) return groups, sorted_prefixes def extract_keywords_from_md(files): text = "" for f in files: if f.endswith(".md"): c = open(f,'r',encoding='utf-8').read() text += " " + c return get_high_info_terms(text) def display_file_manager_sidebar(groups, sorted_prefixes): st.sidebar.title("🎡 Audio & Docs Manager") all_md = [] all_mp3 = [] for prefix in groups: for f in groups[prefix]: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) top_bar = st.sidebar.columns(3) with top_bar[0]: if st.button("πŸ—‘ DelAllMD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("πŸ—‘ DelAllMP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("⬇️ ZipAll"): z = create_zip_of_files(all_md, all_mp3) if z: st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) for prefix in sorted_prefixes: files = groups[prefix] kw = extract_keywords_from_md(files) keywords_str = " ".join(kw) if kw else "No Keywords" with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): c1,c2 = st.columns(2) with c1: if st.button("πŸ‘€ViewGrp", key="view_group_"+prefix): st.session_state.viewing_prefix = prefix with c2: if st.button("πŸ—‘DelGrp", key="del_group_"+prefix): for f in files: os.remove(f) st.success(f"Deleted group {prefix}!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") def create_zip_of_files(md_files, mp3_files): md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None all_content = [] for f in all_files: if f.endswith('.md'): with open(f,'r',encoding='utf-8') as file: all_content.append(file.read()) elif f.endswith('.mp3'): all_content.append(os.path.basename(f)) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content) timestamp = datetime.now().strftime("%y%m_%H%M") name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) zip_name = f"{timestamp}_{name_text}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): """Perform Arxiv search (via your RAG pattern) and generate audio summaries.""" start = time.time() client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") # The next lines call your RAG pipeline refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0] r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}" # Audio outputs if full_audio: complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}" audio_file_full = speak_with_edge_tts(complete_text) if audio_file_full: st.write("### πŸ“š Full Audio") play_and_download_audio(audio_file_full) if vocal_summary: main_text = clean_for_speech(r2) if main_text.strip(): audio_file_main = speak_with_edge_tts(main_text) if audio_file_main: st.write("### πŸŽ™ Short Audio") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Extended references: " + refs.replace('"','') summaries_text = clean_for_speech(summaries_text) if summaries_text.strip(): audio_file_refs = speak_with_edge_tts(summaries_text) if audio_file_refs: st.write("### πŸ“œ Long Refs") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Titles: " + ", ".join(titles) titles_text = clean_for_speech(titles_text) if titles_text.strip(): audio_file_titles = speak_with_edge_tts(titles_text) if audio_file_titles: st.write("### πŸ”– Titles") play_and_download_audio(audio_file_titles) # show text last after playback interfaces. For the big one lets add a feature later that breaks into their own. st.markdown(result) elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") create_file(q, result, "md") return result def main(): st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0) # Display saved files in sidebar groups, sorted_prefixes = load_files_for_sidebar() display_file_manager_sidebar(groups, sorted_prefixes) if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for f in groups[st.session_state.viewing_prefix]: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": content = open(f,'r',encoding='utf-8').read() st.markdown(content) elif ext == "mp3": st.audio(f) else: st.markdown(get_download_link(f), unsafe_allow_html=True) if st.button("❌ Close"): st.session_state.viewing_prefix = None if st.button("πŸ—‘οΈ Clear All History in Sidebar"): md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") for f in md_files+mp3_files: os.remove(f) st.success("All history cleared!") st.rerun() st.title("πŸŽ™οΈ ArXiv Voice Search") # Voice component mycomponent = components.declare_component("mycomponent", path="mycomponent") voice_val = mycomponent(my_input_value="Start speaking...") tabs = st.tabs(["🎀 Voice Chat", "πŸ’Ύ History", "βš™οΈ Settings"]) with tabs[0]: st.subheader("🎀 Voice Chat") if voice_val: voice_text = voice_val.strip() input_changed = (voice_text != st.session_state.get('old_val')) if input_changed and voice_text: # Save user input create_file(st.session_state['user_name'], voice_text, "md") # Perform ArXiv search automatically with st.spinner("Searching ArXiv..."): # Always do vocal_summary = True, extended_refs=False, titles_summary=True, full_audio=False result = perform_ai_lookup(voice_text, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False) # Update old_val st.session_state['old_val'] = voice_text # Clear the text by rerunning #st.rerun() st.write("Speak a query to run an ArXiv search and hear the results.") with tabs[1]: st.subheader("πŸ’Ύ History") # Show all MD files and allow reading them aloud md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True) for i, fpath in enumerate(md_files, start=1): fname = os.path.basename(fpath) with open(fpath,'r',encoding='utf-8') as ff: content = ff.read() with st.expander(fname, expanded=False): st.write(content) if st.button(f"πŸ”Š Read Aloud {fname}", key=f"read_{i}_{fname}"): voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") audio_file = speak_with_edge_tts(content, voice=voice) if audio_file: play_and_download_audio(audio_file) if st.button("πŸ“œ Read Entire History"): all_content = [] for fpath in sorted(md_files, key=os.path.getmtime): with open(fpath,'r',encoding='utf-8') as ff: c = ff.read().strip() if c: all_content.append((fpath, c)) mp3_files = [] for (fpath, text) in all_content: voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") audio_file = speak_with_edge_tts(text, voice=voice) if audio_file: mp3_files.append(audio_file) st.write(f"**{os.path.basename(fpath)}:**") play_and_download_audio(audio_file) if mp3_files: combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" with open(combined_file, 'wb') as outfile: for f in mp3_files: with open(f, 'rb') as infile: outfile.write(infile.read()) st.write("**Full Conversation Audio:**") play_and_download_audio(combined_file) with tabs[2]: st.subheader("βš™οΈ Settings") st.write("Currently no additional settings.") if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__=="__main__": main()