import streamlit as st
import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# -------------------- Configuration --------------------
st.set_page_config(
page_title="π²CCCGπ Code Competition Claude vs GPT",
page_icon="π²π",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "π²CCCGπ Code Competition Claude vs GPT"
}
)
load_dotenv()
# -------------------- Constants --------------------
USER_NAMES = [
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
]
ENGLISH_VOICES = [
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
FILE_EMOJIS = {
"md": "π",
"mp3": "π΅",
}
# -------------------- Session State Initialization --------------------
if 'user_name' not in st.session_state:
st.session_state['user_name'] = USER_NAMES[0]
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'use_streaming' not in st.session_state:
st.session_state['use_streaming'] = True
# -------------------- Helper Functions --------------------
def get_high_info_terms(text: str) -> list:
stop_words = set([
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while'
])
key_phrases = [
'artificial intelligence', 'machine learning', 'deep learning', 'neural networks',
'natural language processing', 'healthcare systems', 'clinical medicine',
'genomics', 'biological systems', 'cognitive science', 'data visualization',
'wellness technology', 'robotics', 'medical imaging', 'semantic understanding',
'transformers', 'large language models', 'empirical studies', 'scientific research',
'quantum mechanics', 'biomedical engineering', 'computational biology'
]
preserved_phrases = []
lower_text = text.lower()
for phrase in key_phrases:
if phrase in lower_text:
preserved_phrases.append(phrase)
text = text.replace(phrase, '')
break
words = re.findall(r'\b\w+(?:-\w+)*\b', text)
high_info_words = [
word.lower() for word in words
if len(word) > 3
and word.lower() not in stop_words
and not word.isdigit()
and any(c.isalpha() for c in word)
]
unique_terms = []
seen = set()
for term in preserved_phrases + high_info_words:
if term not in seen:
seen.add(term)
unique_terms.append(term)
return unique_terms[:5]
def clean_text_for_filename(text: str) -> str:
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
filtered = [w for w in words if len(w)>3 and w not in stop_short]
return '_'.join(filtered)[:200]
def generate_filename(prompt, response, file_type="md"):
central_tz = pytz.timezone('America/Chicago')
central_time = datetime.now(central_tz)
prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_")
combined = (prompt + " " + response).strip()
info_terms = get_high_info_terms(combined)
snippet = (prompt[:100] + " " + response[:100]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
name_parts = info_terms + [snippet_cleaned]
full_name = '_'.join(name_parts)
if len(full_name) > 150:
full_name = full_name[:150]
filename = f"{prefix}{full_name}.{file_type}"
return filename
def create_file(prompt, response, file_type="md"):
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file):
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'π Download {os.path.basename(file)}'
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
# -------------------- Audio Functions --------------------
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, "mp3")
try:
await communicate.save(out_fn)
except edge_tts.exceptions.NoAudioReceived:
st.error("No audio was received from TTS service.")
return None
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'Download {os.path.basename(file_path)}'
st.markdown(dl_link, unsafe_allow_html=True)
# -------------------- File Management Functions --------------------
def load_files_for_sidebar():
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:17]
groups[prefix].append(f)
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
sorted_prefixes = sorted(groups.keys(),
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
return get_high_info_terms(text)
def create_zip_of_files(md_files, mp3_files):
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f,'r',encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3'):
all_content.append(os.path.basename(f))
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content)
timestamp = datetime.now().strftime("%y%m_%H%M")
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
zip_name = f"{timestamp}_{name_text}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def display_file_manager_sidebar(groups, sorted_prefixes):
st.sidebar.title("π΅ Audio & Docs Manager")
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("π DelAllMD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("π DelAllMP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("β¬οΈ ZipAll"):
z = create_zip_of_files(all_md, all_mp3)
if z:
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
c1,c2 = st.columns(2)
with c1:
if st.button("πViewGrp", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
with c2:
if st.button("πDelGrp", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.success(f"Deleted group {prefix}!")
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
st.write(f"**{fname}** - {ctime}")
# -------------------- xAI API Functions --------------------
def call_xai_api_batch(query: str) -> dict:
"""
Call the xAI API in batch mode for complete responses.
"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('xai')}"
}
data = {
"messages": [
{
"role": "system",
"content": "You are a helpful scientific research assistant. Analyze the following research query and provide initial insights."
},
{
"role": "user",
"content": query
}
],
"model": "grok-2-1212",
"stream": False,
"temperature": 0.7
}
try:
response = requests.post(
"https://api.x.ai/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
st.error(f"Error in batch xAI API call: {str(e)}")
return None
def stream_xai_response(query: str, placeholder) -> str:
"""
Stream the xAI API response and display it in real-time.
Returns the complete response text.
"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('xai')}"
}
data = {
"messages": [
{
"role": "system",
"content": "You are a helpful scientific research assistant. Analyze the following research query and provide initial insights."
},
{
"role": "user",
"content": query
}
],
"model": "grok-2-1212",
"stream": True,
"temperature": 0.7
}
try:
response = requests.post(
"https://api.x.ai/v1/chat/completions",
headers=headers,
json=data,
stream=True,
timeout=30
)
response.raise_for_status()
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
json_str = line[6:] # Remove 'data: ' prefix
if json_str == '[DONE]':
break
try:
chunk = json.loads(json_str)
if chunk["choices"][0]["delta"].get("content"):
content = chunk["choices"][0]["delta"]["content"]
full_response += content
# Update the placeholder with accumulated text
placeholder.markdown(full_response + "β")
except json.JSONDecodeError:
continue
# Final update without the cursor
placeholder.markdown(full_response)
return full_response
except requests.exceptions.RequestException as e:
st.error(f"Error in streaming xAI API call: {str(e)}")
return None
# -------------------- Main AI Lookup Function --------------------
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, use_streaming=True):
"""Perform Arxiv search with initial xAI insights."""
start = time.time()
# First, get xAI insights
st.write("### π€ Initial AI Insights")
initial_insights = None
if use_streaming:
# Create a placeholder for streaming text
streaming_placeholder = st.empty()
with st.spinner("Getting streaming AI insights..."):
initial_insights = stream_xai_response(q, streaming_placeholder)
else:
with st.spinner("Getting batch AI insights..."):
xai_response = call_xai_api_batch(q)
if xai_response and 'choices' in xai_response:
initial_insights = xai_response['choices'][0]['message']['content']
st.markdown(initial_insights)
# Generate audio for xAI insights if enabled
if vocal_summary and initial_insights:
insights_text = clean_for_speech(initial_insights)
if insights_text.strip():
audio_file_insights = speak_with_edge_tts(insights_text)
if audio_file_insights:
st.write("### π€ AI Insights Audio")
play_and_download_audio(audio_file_insights)
# Proceed with existing ArXiv search
st.write("### π ArXiv Results")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
result = f"### π {q}\n\n{r2}\n\n{refs}"
# Audio outputs
if full_audio:
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
audio_file_full = speak_with_edge_tts(complete_text)
if audio_file_full:
st.write("### π Full Audio")
play_and_download_audio(audio_file_full)
if vocal_summary:
main_text = clean_for_speech(r2)
if main_text.strip():
audio_file_main = speak_with_edge_tts(main_text)
if audio_file_main:
st.write("### π Short Audio")
play_and_download_audio(audio_file_main)
if extended_refs:
summaries_text = "Extended references: " + refs.replace('"','')
summaries_text = clean_for_speech(summaries_text)
if summaries_text.strip():
audio_file_refs = speak_with_edge_tts(summaries_text)
if audio_file_refs:
st.write("### π Long Refs")
play_and_download_audio(audio_file_refs)
if titles_summary:
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Titles: " + ", ".join(titles)
titles_text = clean_for_speech(titles_text)
if titles_text.strip():
audio_file_titles = speak_with_edge_tts(titles_text)
if audio_file_titles:
st.write("### π Titles")
play_and_download_audio(audio_file_titles)
st.markdown(result)
# Save complete results including xAI insights
if initial_insights:
full_result = f"### π€ Initial AI Insights\n\n{initial_insights}\n\n{result}"
else:
full_result = result
create_file(q, full_result, "md")
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return full_result
# -------------------- Main Application --------------------
def main():
st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0)
# Display saved files in sidebar
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
st.markdown(get_download_link(f), unsafe_allow_html=True)
if st.button("β Close"):
st.session_state.viewing_prefix = None
if st.button("ποΈ Clear All History in Sidebar"):
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
for f in md_files+mp3_files:
os.remove(f)
st.success("All history cleared!")
st.rerun()
st.title("ποΈ ArXiv Voice Search")
# Voice component
mycomponent = components.declare_component("mycomponent", path="mycomponent")
voice_val = mycomponent(my_input_value="Start speaking...")
tabs = st.tabs(["π€ Voice Chat", "πΎ History", "βοΈ Settings"])
with tabs[0]:
st.subheader("π€ Voice Chat")
if voice_val:
voice_text = voice_val.strip()
input_changed = (voice_text != st.session_state.get('old_val'))
if input_changed and voice_text:
# Save user input
create_file(st.session_state['user_name'], voice_text, "md")
# Perform AI lookup with current streaming setting
with st.spinner("Processing..."):
result = perform_ai_lookup(
voice_text,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=False,
use_streaming=st.session_state['use_streaming']
)
st.session_state['old_val'] = voice_text
st.write("Speak a query to run an ArXiv search and hear the results.")
with tabs[1]:
st.subheader("πΎ History")
# Show all MD files and allow reading them aloud
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True)
for i, fpath in enumerate(md_files, start=1):
fname = os.path.basename(fpath)
with open(fpath,'r',encoding='utf-8') as ff:
content = ff.read()
with st.expander(fname, expanded=False):
st.write(content)
if st.button(f"π Read Aloud {fname}", key=f"read_{i}_{fname}"):
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(content, voice=voice)
if audio_file:
play_and_download_audio(audio_file)
if st.button("π Read Entire History"):
all_content = []
for fpath in sorted(md_files, key=os.path.getmtime):
with open(fpath,'r',encoding='utf-8') as ff:
c = ff.read().strip()
if c:
all_content.append((fpath, c))
mp3_files = []
for (fpath, text) in all_content:
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(text, voice=voice)
if audio_file:
mp3_files.append(audio_file)
st.write(f"**{os.path.basename(fpath)}:**")
play_and_download_audio(audio_file)
if mp3_files:
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
with open(combined_file, 'wb') as outfile:
for f in mp3_files:
with open(f, 'rb') as infile:
outfile.write(infile.read())
st.write("**Full Conversation Audio:**")
play_and_download_audio(combined_file)
with tabs[2]:
st.subheader("βοΈ Settings")
st.session_state['use_streaming'] = st.toggle(
"Use streaming responses",
value=st.session_state['use_streaming'],
help="Enable to see AI responses as they are generated in real-time"
)
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__ == "__main__":
main()