import streamlit as st import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile import plotly.graph_objects as go import streamlit.components.v1 as components from datetime import datetime from audio_recorder_streamlit import audio_recorder from bs4 import BeautifulSoup from collections import defaultdict from dotenv import load_dotenv from gradio_client import Client from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image from PyPDF2 import PdfReader from urllib.parse import quote from xml.etree import ElementTree as ET import extra_streamlit_components as stx from streamlit.runtime.scriptrunner import get_script_run_ctx import asyncio import edge_tts # -------------------- Configuration -------------------- st.set_page_config( page_title="🚲CCCGπŸ† Code Competition Claude vs GPT", page_icon="πŸš²πŸ†", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "🚲CCCGπŸ† Code Competition Claude vs GPT" } ) load_dotenv() # -------------------- Constants -------------------- USER_NAMES = [ "Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William" ] ENGLISH_VOICES = [ "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural", "en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural", "en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural" ] USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES)) FILE_EMOJIS = { "md": "πŸ“", "mp3": "🎡", } # -------------------- Session State Initialization -------------------- if 'user_name' not in st.session_state: st.session_state['user_name'] = USER_NAMES[0] if 'old_val' not in st.session_state: st.session_state['old_val'] = None if 'viewing_prefix' not in st.session_state: st.session_state['viewing_prefix'] = None if 'should_rerun' not in st.session_state: st.session_state['should_rerun'] = False if 'use_streaming' not in st.session_state: st.session_state['use_streaming'] = True # -------------------- Helper Functions -------------------- def get_high_info_terms(text: str) -> list: stop_words = set([ 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while' ]) key_phrases = [ 'artificial intelligence', 'machine learning', 'deep learning', 'neural networks', 'natural language processing', 'healthcare systems', 'clinical medicine', 'genomics', 'biological systems', 'cognitive science', 'data visualization', 'wellness technology', 'robotics', 'medical imaging', 'semantic understanding', 'transformers', 'large language models', 'empirical studies', 'scientific research', 'quantum mechanics', 'biomedical engineering', 'computational biology' ] preserved_phrases = [] lower_text = text.lower() for phrase in key_phrases: if phrase in lower_text: preserved_phrases.append(phrase) text = text.replace(phrase, '') break words = re.findall(r'\b\w+(?:-\w+)*\b', text) high_info_words = [ word.lower() for word in words if len(word) > 3 and word.lower() not in stop_words and not word.isdigit() and any(c.isalpha() for c in word) ] unique_terms = [] seen = set() for term in preserved_phrases + high_info_words: if term not in seen: seen.add(term) unique_terms.append(term) return unique_terms[:5] def clean_text_for_filename(text: str) -> str: text = text.lower() text = re.sub(r'[^\w\s-]', '', text) words = text.split() stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) filtered = [w for w in words if len(w)>3 and w not in stop_short] return '_'.join(filtered)[:200] def generate_filename(prompt, response, file_type="md"): central_tz = pytz.timezone('America/Chicago') central_time = datetime.now(central_tz) prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_") combined = (prompt + " " + response).strip() info_terms = get_high_info_terms(combined) snippet = (prompt[:100] + " " + response[:100]).strip() snippet_cleaned = clean_text_for_filename(snippet) name_parts = info_terms + [snippet_cleaned] full_name = '_'.join(name_parts) if len(full_name) > 150: full_name = full_name[:150] filename = f"{prefix}{full_name}.{file_type}" return filename def create_file(prompt, response, file_type="md"): filename = generate_filename(prompt.strip(), response.strip(), file_type) with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) return filename def get_download_link(file): with open(file, "rb") as f: b64 = base64.b64encode(f.read()).decode() return f'πŸ“‚ Download {os.path.basename(file)}' def clean_for_speech(text: str) -> str: text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text # -------------------- Audio Functions -------------------- async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = generate_filename(text, text, "mp3") try: await communicate.save(out_fn) except edge_tts.exceptions.NoAudioReceived: st.error("No audio was received from TTS service.") return None return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) def play_and_download_audio(file_path): if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) # -------------------- File Management Functions -------------------- def load_files_for_sidebar(): md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files groups = defaultdict(list) for f in all_files: fname = os.path.basename(f) prefix = fname[:17] groups[prefix].append(f) for prefix in groups: groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True) return groups, sorted_prefixes def extract_keywords_from_md(files): text = "" for f in files: if f.endswith(".md"): c = open(f,'r',encoding='utf-8').read() text += " " + c return get_high_info_terms(text) def create_zip_of_files(md_files, mp3_files): md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] all_files = md_files + mp3_files if not all_files: return None all_content = [] for f in all_files: if f.endswith('.md'): with open(f,'r',encoding='utf-8') as file: all_content.append(file.read()) elif f.endswith('.mp3'): all_content.append(os.path.basename(f)) combined_content = " ".join(all_content) info_terms = get_high_info_terms(combined_content) timestamp = datetime.now().strftime("%y%m_%H%M") name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) zip_name = f"{timestamp}_{name_text}.zip" with zipfile.ZipFile(zip_name,'w') as z: for f in all_files: z.write(f) return zip_name def display_file_manager_sidebar(groups, sorted_prefixes): st.sidebar.title("🎡 Audio & Docs Manager") all_md = [] all_mp3 = [] for prefix in groups: for f in groups[prefix]: if f.endswith(".md"): all_md.append(f) elif f.endswith(".mp3"): all_mp3.append(f) top_bar = st.sidebar.columns(3) with top_bar[0]: if st.button("πŸ—‘ DelAllMD"): for f in all_md: os.remove(f) st.session_state.should_rerun = True with top_bar[1]: if st.button("πŸ—‘ DelAllMP3"): for f in all_mp3: os.remove(f) st.session_state.should_rerun = True with top_bar[2]: if st.button("⬇️ ZipAll"): z = create_zip_of_files(all_md, all_mp3) if z: st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) for prefix in sorted_prefixes: files = groups[prefix] kw = extract_keywords_from_md(files) keywords_str = " ".join(kw) if kw else "No Keywords" with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): c1,c2 = st.columns(2) with c1: if st.button("πŸ‘€ViewGrp", key="view_group_"+prefix): st.session_state.viewing_prefix = prefix with c2: if st.button("πŸ—‘DelGrp", key="del_group_"+prefix): for f in files: os.remove(f) st.success(f"Deleted group {prefix}!") st.session_state.should_rerun = True for f in files: fname = os.path.basename(f) ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") st.write(f"**{fname}** - {ctime}") # -------------------- xAI API Functions -------------------- def call_xai_api_batch(query: str) -> dict: """ Call the xAI API in batch mode for complete responses. """ headers = { "Content-Type": "application/json", "Authorization": f"Bearer {os.environ.get('xai')}" } data = { "messages": [ { "role": "system", "content": "You are a helpful scientific research assistant. Analyze the following research query and provide initial insights." }, { "role": "user", "content": query } ], "model": "grok-2-1212", "stream": False, "temperature": 0.7 } try: response = requests.post( "https://api.x.ai/v1/chat/completions", headers=headers, json=data, timeout=30 ) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: st.error(f"Error in batch xAI API call: {str(e)}") return None def stream_xai_response(query: str, placeholder) -> str: """ Stream the xAI API response and display it in real-time. Returns the complete response text. """ headers = { "Content-Type": "application/json", "Authorization": f"Bearer {os.environ.get('xai')}" } data = { "messages": [ { "role": "system", "content": "You are a helpful scientific research assistant. Analyze the following research query and provide initial insights." }, { "role": "user", "content": query } ], "model": "grok-2-1212", "stream": True, "temperature": 0.7 } try: response = requests.post( "https://api.x.ai/v1/chat/completions", headers=headers, json=data, stream=True, timeout=30 ) response.raise_for_status() full_response = "" for line in response.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): json_str = line[6:] # Remove 'data: ' prefix if json_str == '[DONE]': break try: chunk = json.loads(json_str) if chunk["choices"][0]["delta"].get("content"): content = chunk["choices"][0]["delta"]["content"] full_response += content # Update the placeholder with accumulated text placeholder.markdown(full_response + "β–Œ") except json.JSONDecodeError: continue # Final update without the cursor placeholder.markdown(full_response) return full_response except requests.exceptions.RequestException as e: st.error(f"Error in streaming xAI API call: {str(e)}") return None # -------------------- Main AI Lookup Function -------------------- def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, use_streaming=True): """Perform Arxiv search with initial xAI insights.""" start = time.time() # First, get xAI insights st.write("### πŸ€– Initial AI Insights") initial_insights = None if use_streaming: # Create a placeholder for streaming text streaming_placeholder = st.empty() with st.spinner("Getting streaming AI insights..."): initial_insights = stream_xai_response(q, streaming_placeholder) else: with st.spinner("Getting batch AI insights..."): xai_response = call_xai_api_batch(q) if xai_response and 'choices' in xai_response: initial_insights = xai_response['choices'][0]['message']['content'] st.markdown(initial_insights) # Generate audio for xAI insights if enabled if vocal_summary and initial_insights: insights_text = clean_for_speech(initial_insights) if insights_text.strip(): audio_file_insights = speak_with_edge_tts(insights_text) if audio_file_insights: st.write("### 🎀 AI Insights Audio") play_and_download_audio(audio_file_insights) # Proceed with existing ArXiv search st.write("### πŸ“š ArXiv Results") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}" # Audio outputs if full_audio: complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}" audio_file_full = speak_with_edge_tts(complete_text) if audio_file_full: st.write("### πŸ“š Full Audio") play_and_download_audio(audio_file_full) if vocal_summary: main_text = clean_for_speech(r2) if main_text.strip(): audio_file_main = speak_with_edge_tts(main_text) if audio_file_main: st.write("### πŸŽ™ Short Audio") play_and_download_audio(audio_file_main) if extended_refs: summaries_text = "Extended references: " + refs.replace('"','') summaries_text = clean_for_speech(summaries_text) if summaries_text.strip(): audio_file_refs = speak_with_edge_tts(summaries_text) if audio_file_refs: st.write("### πŸ“œ Long Refs") play_and_download_audio(audio_file_refs) if titles_summary: titles = [] for line in refs.split('\n'): m = re.search(r"\[([^\]]+)\]", line) if m: titles.append(m.group(1)) if titles: titles_text = "Titles: " + ", ".join(titles) titles_text = clean_for_speech(titles_text) if titles_text.strip(): audio_file_titles = speak_with_edge_tts(titles_text) if audio_file_titles: st.write("### πŸ”– Titles") play_and_download_audio(audio_file_titles) st.markdown(result) # Save complete results including xAI insights if initial_insights: full_result = f"### πŸ€– Initial AI Insights\n\n{initial_insights}\n\n{result}" else: full_result = result create_file(q, full_result, "md") elapsed = time.time()-start st.write(f"**Total Elapsed:** {elapsed:.2f} s") return full_result # -------------------- Main Application -------------------- def main(): st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0) # Display saved files in sidebar groups, sorted_prefixes = load_files_for_sidebar() display_file_manager_sidebar(groups, sorted_prefixes) if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: st.write("---") st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") for f in groups[st.session_state.viewing_prefix]: fname = os.path.basename(f) ext = os.path.splitext(fname)[1].lower().strip('.') st.write(f"### {fname}") if ext == "md": content = open(f,'r',encoding='utf-8').read() st.markdown(content) elif ext == "mp3": st.audio(f) else: st.markdown(get_download_link(f), unsafe_allow_html=True) if st.button("❌ Close"): st.session_state.viewing_prefix = None if st.button("πŸ—‘οΈ Clear All History in Sidebar"): md_files = glob.glob("*.md") mp3_files = glob.glob("*.mp3") for f in md_files+mp3_files: os.remove(f) st.success("All history cleared!") st.rerun() st.title("πŸŽ™οΈ ArXiv Voice Search") # Voice component mycomponent = components.declare_component("mycomponent", path="mycomponent") voice_val = mycomponent(my_input_value="Start speaking...") tabs = st.tabs(["🎀 Voice Chat", "πŸ’Ύ History", "βš™οΈ Settings"]) with tabs[0]: st.subheader("🎀 Voice Chat") if voice_val: voice_text = voice_val.strip() input_changed = (voice_text != st.session_state.get('old_val')) if input_changed and voice_text: # Save user input create_file(st.session_state['user_name'], voice_text, "md") # Perform AI lookup with current streaming setting with st.spinner("Processing..."): result = perform_ai_lookup( voice_text, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, use_streaming=st.session_state['use_streaming'] ) st.session_state['old_val'] = voice_text st.write("Speak a query to run an ArXiv search and hear the results.") with tabs[1]: st.subheader("πŸ’Ύ History") # Show all MD files and allow reading them aloud md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True) for i, fpath in enumerate(md_files, start=1): fname = os.path.basename(fpath) with open(fpath,'r',encoding='utf-8') as ff: content = ff.read() with st.expander(fname, expanded=False): st.write(content) if st.button(f"πŸ”Š Read Aloud {fname}", key=f"read_{i}_{fname}"): voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") audio_file = speak_with_edge_tts(content, voice=voice) if audio_file: play_and_download_audio(audio_file) if st.button("πŸ“œ Read Entire History"): all_content = [] for fpath in sorted(md_files, key=os.path.getmtime): with open(fpath,'r',encoding='utf-8') as ff: c = ff.read().strip() if c: all_content.append((fpath, c)) mp3_files = [] for (fpath, text) in all_content: voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") audio_file = speak_with_edge_tts(text, voice=voice) if audio_file: mp3_files.append(audio_file) st.write(f"**{os.path.basename(fpath)}:**") play_and_download_audio(audio_file) if mp3_files: combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" with open(combined_file, 'wb') as outfile: for f in mp3_files: with open(f, 'rb') as infile: outfile.write(infile.read()) st.write("**Full Conversation Audio:**") play_and_download_audio(combined_file) with tabs[2]: st.subheader("βš™οΈ Settings") st.session_state['use_streaming'] = st.toggle( "Use streaming responses", value=st.session_state['use_streaming'], help="Enable to see AI responses as they are generated in real-time" ) if st.session_state.should_rerun: st.session_state.should_rerun = False st.rerun() if __name__ == "__main__": main()