from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration import torch import gradio as gr # PersistDataset ----- import os import csv from gradio import inputs, outputs import huggingface_hub from huggingface_hub import Repository, hf_hub_download, upload_file from datetime import datetime from typing import List, Dict import httpx import pandas as pd # -------------------------------------------- For Memory - you will need to set up a dataset and HF_TOKEN --------- UseMemory=True if UseMemory: DATASET_REPO_URL="https://huggingface.co/datasets/awacke1/ChatbotMemory.csv" DATASET_REPO_ID="awacke1/ChatbotMemory.csv" DATA_FILENAME="ChatbotMemory.csv" DATA_FILE=os.path.join("data", DATA_FILENAME) HF_TOKEN=os.environ.get("HF_TOKEN") if UseMemory: try: hf_hub_download( repo_id=DATASET_REPO_ID, filename=DATA_FILENAME, cache_dir=DATA_DIRNAME, force_filename=DATA_FILENAME ) except: print("file not found") repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) def get_df(name: str): dataset = load_dataset(str, split="train") return dataset def store_message(name: str, message: str): if name and message: with open(DATA_FILE, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ]) writer.writerow( {"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } ) commit_url = repo.push_to_hub() f=get_df(DATASET_REPO_ID) print(f) return "" # ----------------------------------------------- For Memory mname = "facebook/blenderbot-400M-distill" model = BlenderbotForConditionalGeneration.from_pretrained(mname) tokenizer = BlenderbotTokenizer.from_pretrained(mname) def take_last_tokens(inputs, note_history, history): """Filter the last 128 tokens""" if inputs['input_ids'].shape[1] > 128: inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) note_history = [' '.join(note_history[0].split(' ')[2:])] history = history[1:] return inputs, note_history, history def add_note_to_history(note, note_history): """Add a note to the historical information""" note_history.append(note) note_history = ' '.join(note_history) return [note_history] title = "💬ChatBack🧠💾" description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """ def chat(message, history): history = history or [] if history: history_useful = [' '.join([str(a[0])+' '+str(a[1]) for a in history])] else: history_useful = [] history_useful = add_note_to_history(message, history_useful) inputs = tokenizer(history_useful, return_tensors="pt") inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) reply_ids = model.generate(**inputs) response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] history_useful = add_note_to_history(response, history_useful) list_history = history_useful[0].split(' ') history.append((list_history[-2], list_history[-1])) ret = store_message(message, response) # Save to dataset -- uncomment with code above, create a dataset to store and add your HF_TOKEN from profile to this repo to use. return history, history gr.Interface( fn=chat, theme="huggingface", css=".footer {display:none !important}", inputs=["text", "state"], outputs=["chatbot", "state", "text"], title=title, allow_flagging="never", description=f"Gradio chatbot backed by memory in a dataset repository.", article=f"The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) 🦃Thanks!🦃 Check out HF Datasets: https://huggingface.co/spaces/awacke1/FreddysDatasetViewer SOTA papers code and datasets on chat are here: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest" ).launch(debug=True)