from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration import torch import gradio as gr from datasets import load_dataset # PersistDataset ----- import os import csv from gradio import inputs, outputs import huggingface_hub from huggingface_hub import Repository, hf_hub_download, upload_file from datetime import datetime #fastapi is where its at: share your app, share your api import fastapi from typing import List, Dict import httpx import pandas as pd import datasets as ds UseMemory=True HF_TOKEN=os.environ.get("HF_TOKEN") def SaveResult(text, outputfileName): basedir = os.path.dirname(__file__) savePath = outputfileName print("Saving: " + text + " to " + savePath) from os.path import exists file_exists = exists(savePath) if file_exists: with open(outputfileName, "a") as f: #append f.write(str(text.replace("\n"," "))) f.write('\n') else: with open(outputfileName, "w") as f: #write f.write(str("time, message, text\n")) # one time only to get column headers for CSV file f.write(str(text.replace("\n"," "))) f.write('\n') return def store_message(name: str, message: str, outputfileName: str): basedir = os.path.dirname(__file__) savePath = outputfileName # if file doesn't exist, create it with labels and a few default rows from os.path import exists file_exists = exists(savePath) if not file_exists: with open(savePath, "w") as f: # Create and write column headers and default content f.write("time, message, name\n") # Column headers # Write a few default rows (if needed) f.write(f"{str(datetime.now())}, Welcome to Chatback!, System\n") f.write(f"{str(datetime.now())}, How can I assist you today?, System\n") # Proceed to add the actual message if name and message are provided if name and message: with open(savePath, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=["time", "message", "name"]) writer.writerow( {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()} ) # Load and sort the dataframe df = pd.read_csv(savePath) df = df.sort_values(df.columns[0], ascending=False) return df mname = "facebook/blenderbot-400M-distill" model = BlenderbotForConditionalGeneration.from_pretrained(mname) tokenizer = BlenderbotTokenizer.from_pretrained(mname) def take_last_tokens(inputs, note_history, history): if inputs['input_ids'].shape[1] > 128: inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) note_history = [' '.join(note_history[0].split(' ')[2:])] history = history[1:] return inputs, note_history, history def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay. note_history.append(note) note_history = ' '.join(note_history) return [note_history] title = "💬ChatBack🧠💾" description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """ def get_base(filename): basedir = os.path.dirname(__file__) print(basedir) #loadPath = basedir + "\\" + filename # works on windows loadPath = basedir + filename print(loadPath) return loadPath def chat(message, history): history = history or [] if history: history_useful = [' '.join([str(a[0])+' '+str(a[1]) for a in history])] else: history_useful = [] history_useful = add_note_to_history(message, history_useful) inputs = tokenizer(history_useful, return_tensors="pt") inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) reply_ids = model.generate(**inputs) response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] history_useful = add_note_to_history(response, history_useful) list_history = history_useful[0].split(' ') history.append((list_history[-2], list_history[-1])) df=pd.DataFrame() if UseMemory: #outputfileName = 'ChatbotMemory.csv' outputfileName = 'ChatbotMemory3.csv' # Test first time file create df = store_message(message, response, outputfileName) # Save to dataset basedir = get_base(outputfileName) return history, df, basedir with gr.Blocks() as demo: gr.Markdown("

🍰Gradio chatbot backed by dataframe CSV memory🎨

") with gr.Row(): t1 = gr.Textbox(lines=1, default="", label="Chat Text:") b1 = gr.Button("Respond and Retrieve Messages") with gr.Row(): # inputs and buttons s1 = gr.State([]) df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate") with gr.Row(): # inputs and buttons file = gr.File(label="File") s2 = gr.Markdown() b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) demo.launch(debug=True, show_error=True)