import torch import transformers import gradio as gr from ragatouille import RAGPretrainedModel from huggingface_hub import InferenceClient import re from datetime import datetime import json import arxiv from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search import os import glob # πŸŽ›οΈ App configuration - tweak these knobs for maximum brain power! 🧠πŸ’ͺ retrieve_results = 20 show_examples = True llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] # 🎭 LLM acting instructions - "To be, or not to be... verbose" πŸ€” generate_kwargs = dict( temperature = None, max_new_tokens = 512, top_p = None, do_sample = False, ) # πŸ§™β€β™‚οΈ Summoning the RAG model - "Accio knowledge!" πŸ“šβœ¨ RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") try: gr.Info("πŸ—οΈ Setting up the knowledge retriever, please wait... πŸ•°οΈ") rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1) gr.Info("πŸŽ‰ Retriever is up and running! Time to flex those brain muscles! πŸ’ͺ🧠") except: gr.Warning("😱 Oh no! The retriever took a coffee break. Try again later! β˜•") # πŸ“œ The grand introduction - roll out the red carpet! 🎭 mark_text = '# πŸ©ΊπŸ” Search Results\n' header_text = "## πŸ“šArxivπŸ“–PaperπŸ”Search - πŸ•΅οΈβ€β™€οΈ Uncover, πŸ“ Summarize, and 🧩 Solve πŸ”¬ Research πŸ€”β“ Puzzles ✍️ with πŸ“š Papers and πŸ€– RAG AI 🧠\n" # πŸ•°οΈ Time travel to find when our knowledge was last updated πŸš€ try: with open("README.md", "r") as f: mdfile = f.read() date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}' match = re.search(date_pattern, mdfile) date = match.group().split(': ')[1] formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y') header_text += f'Index Last Updated: {formatted_date}\n' index_info = f"Semantic Search - up to {formatted_date}" except: index_info = "Semantic Search" database_choices = [index_info, 'Arxiv Search - Latest - (EXPERIMENTAL)'] # πŸ¦‰ Arxiv API - the wise old owl of academic knowledge πŸ“œ arx_client = arxiv.Client() is_arxiv_available = True check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results) if len(check_arxiv_result) == 0: is_arxiv_available = False print("😴 Arxiv search is taking a nap, switching to default search ...") database_choices = [index_info] # 🎭 Show examples - a teaser trailer for your brain! 🍿🧠 sample_outputs = { 'output_placeholder': 'The LLM will provide an answer to your question here...', 'search_placeholder': ''' 1. What is MoE? 2. What are Multi Agent Systems? 3. What is Self Rewarding AI? 4. What is Semantic and Episodic memory? 5. What is AutoGen? 6. What is ChatDev? 7. What is Omniverse? 8. What is Lumiere? 9. What is SORA? ''' } output_placeholder = sample_outputs['output_placeholder'] md_text_initial = sample_outputs['search_placeholder'] # 🧹 Clean up the RAG output - nobody likes a messy mind! 🧼🧠 def rag_cleaner(inp): rank = inp['rank'] title = inp['document_metadata']['title'] content = inp['content'] date = inp['document_metadata']['_time'] return f"{rank}. {title} \n Date : {date} \n Abstract: {content}" # 🎭 Craft the perfect prompt - it's showtime for the LLM! 🎬 def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): if formatted: sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and let's think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates." message = f"Question: {question}" if 'mistralai' in llm_model_picked: return f"" + f"[INST] {sys_instruction}" + f" {message}[/INST]" elif 'gemma' in llm_model_picked: return f"user\n{sys_instruction}" + f" {message}\n" return f"Context:\n {context} \n Given the following info, take a deep breath and let's think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" # πŸ•΅οΈβ€β™€οΈ Get those juicy references - time to go treasure hunting! πŸ’ŽπŸ“š def get_references(question, retriever, k = retrieve_results): rag_out = retriever.search(query=question, k=k) return rag_out def get_rag(message): return get_references(message, RAG) # 🎀 Save the response and read it aloud - it's karaoke time for your brain! 🧠🎢 def SaveResponseAndRead(result): documentHTML5=''' Read It Aloud

πŸ”Š Read It Aloud


''' gr.HTML(documentHTML5) # πŸ“ File management functions - because even AI needs a filing system! πŸ—„οΈπŸ€– def save_response_as_markdown(question, response): timestamp = datetime.now().strftime("%Y%m%d%H%M") filename = f"{timestamp}_{question[:50]}.md" # Truncate question to 50 chars for filename with open(filename, "w", encoding="utf-8") as f: f.write(response) return filename def list_markdown_files(): files = glob.glob("*.md") files.sort(key=os.path.getmtime, reverse=True) return [f for f in files if f != "README.md"] def delete_file(filename): if filename != "README.md": os.remove(filename) return f"Deleted {filename}" return "Cannot delete README.md" def display_markdown_contents(): files = list_markdown_files() output = "" for file in files: with open(file, "r", encoding="utf-8") as f: content = f.read() output += f"## {file}\n\n```markdown\n{content}\n```\n\n" return output # 🎨 Building the UI - it's like LEGO, but for brains! πŸ§ πŸ—οΈ with gr.Blocks(theme = gr.themes.Soft()) as demo: header = gr.Markdown(header_text) with gr.Group(): msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?') with gr.Accordion("Advanced Settings", open=False): with gr.Row(equal_height = True): llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model') llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context") database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source') stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False) output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder) input = gr.Textbox(show_label = False, visible = False) gr_md = gr.Markdown(mark_text + md_text_initial) with gr.Tab("Saved Responses"): refresh_button = gr.Button("πŸ”„ Refresh File List") file_list = gr.Dropdown(choices=list_markdown_files(), label="Saved Responses") delete_button = gr.Button("πŸ—‘οΈ Delete Selected File") markdown_display = gr.Markdown() # πŸ”„ Update the file list - keeping things fresh! 🌿 def update_file_list(): return gr.Dropdown(choices=list_markdown_files()) refresh_button.click(update_file_list, outputs=[file_list]) delete_button.click(delete_file, inputs=[file_list], outputs=[markdown_display]).then(update_file_list, outputs=[file_list]) file_list.change(lambda x: open(x, "r", encoding="utf-8").read() if x else "", inputs=[file_list], outputs=[markdown_display]) # 🎭 The grand finale - where the magic happens! 🎩✨ def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): prompt_text_from_data = "" database_to_use = database_choice if database_choice == index_info: rag_out = get_rag(message) else: arxiv_search_success = True try: rag_out = get_arxiv_live_search(message, arx_client, retrieve_results) if len(rag_out) == 0: arxiv_search_success = False except: arxiv_search_success = False if not arxiv_search_success: gr.Warning("😴 Arxiv Search is taking a siesta, switching to semantic search ...") rag_out = get_rag(message) database_to_use = index_info md_text_updated = mark_text for i in range(retrieve_results): rag_answer = rag_out[i] if i < llm_results_use: md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True) prompt_text_from_data += f"{i+1}. {prompt_text}" else: md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use) md_text_updated += md_text_paper prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked) return md_text_updated, prompt # 🧠 Asking the LLM - it's like a really smart magic 8-ball! 🎱✨ def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False): model_disabled_text = "LLM Model is taking a vacation. Try again later! πŸ–οΈ" output = "" if llm_model_picked == 'None': if stream_outputs: for out in model_disabled_text: output += out yield output return output else: return model_disabled_text client = InferenceClient(llm_model_picked) try: stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False) except: gr.Warning("🚦 LLM Inference hit a traffic jam! Take a breather and try again later.") return "" if stream_outputs: for response in stream: output += response SaveResponseAndRead(response) yield output return output else: return stream # 🎬 Action! Process the query and save the response def process_and_save(message, llm_results_use, database_choice, llm_model_picked): md_text_updated, prompt = update_with_rag_md(message, llm_results_use, database_choice, llm_model_picked) llm_response = ask_llm(prompt, llm_model_picked, stream_outputs=False) full_response = f"Question: {message}\n\nResponse:\n{llm_response}\n\nReferences:\n{md_text_updated}" filename = save_response_as_markdown(message, full_response) return md_text_updated, prompt, llm_response, filename # 🎬 Lights, camera, action! Let's get this show on the road! πŸš€ msg.submit(process_and_save, [msg, llm_results, database_src, llm_model], [gr_md, input, output_text, file_list]).then(update_file_list, outputs=[file_list]) # πŸŽ‰ Launch the app - let the knowledge party begin! 🎊🧠 demo.queue().launch()