import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
retrieve_results = 10
generate_kwargs = dict(
temperature = None,
max_new_tokens = 512,
top_p = None,
do_sample = False,
)
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("Setting up retriever, please wait...")
_ = RAG.search("what is Mistral?", k = 1)
gr.Info("Retriever working successfully!")
except:
gr.Warning("Retriever not working!")
mark_text = '# 🔍 Search Results\n'
header_text = "# ArXiv RAG\n"
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
except:
pass
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
return f"{rank}. {title} \n Abstract: {content}"
def get_prompt_text(question, context, formatted = True):
if formatted:
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer what the question. Cite the titles of your sources when answering."
message = f"Question: {question}"
return f"" + f"[INST] {sys_instruction} " + f" {message} [/INST] "
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results to sent as context")
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True)
input = gr.Textbox(show_label = False, visible = False)
gr_md = gr.Markdown(mark_text)
def update_with_rag_md(message, llm_results_use = 5):
rag_out = get_rag(message)
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
title = rag_answer['document_metadata']['title'].replace('\n','')
score = round(rag_answer['score'], 2)
paper_title = f'''### **{score}** | [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
paper_abs = rag_answer['content']
authors = rag_answer['document_metadata']['authors'].replace('\n','')
authors_formatted = f'*{authors}*' + ' \n\n'
md_text_updated += paper_title + authors_formatted + paper_abs + '\n---------------\n'+ '\n'
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use]))
return md_text_updated, prompt
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
if llm_model_picked == 'None':
return gr.Textbox(visible = False)
client = InferenceClient(llm_model_picked)
output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
output = output.lstrip(' \n') if output.lstrip().startswith('\n') else output
return gr.Textbox(output, visible = True)
msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model], output_text)
demo.launch(debug = True)