from flask import Flask, send_from_directory from flask import request import random import json import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle import os from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import confusion_matrix import math import altair as alt import matplotlib.pyplot as plt import time import audit_utils as utils app = Flask(__name__) # Path for our main Svelte page @app.route("/") def base(): return send_from_directory('indie_label_svelte/public', 'index.html') # Path for all the static files (compiled JS/CSS, etc.) @app.route("/") def home(path): return send_from_directory('indie_label_svelte/public', path) ######################################## # ROUTE: /AUDIT_SETTINGS comments_grouped_full_topic_cat = pd.read_pickle("data/comments_grouped_full_topic_cat2_persp.pkl") @app.route("/audit_settings") def audit_settings(): # Fetch page content user = request.args.get("user") scaffold_method = request.args.get("scaffold_method") user_models = utils.get_all_model_names(user) grp_models = [m for m in user_models if m.startswith(f"model_{user}_group_")] clusters = utils.get_unique_topics() if len(user_models) > 2 and scaffold_method != "tutorial" and user != "DemoUser": # Highlight topics that have been tuned tuned_clusters = [m.lstrip(f"model_{user}_") for m in user_models if (m != f"model_{user}" and not m.startswith(f"model_{user}_group_"))] other_clusters = [c for c in clusters if c not in tuned_clusters] tuned_options = { "label": "Topics with tuned models", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(tuned_clusters)], } other_options = { "label": "All other topics", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(other_clusters)], } clusters_options = [tuned_options, other_options] else: clusters_options = [{ "label": "All auto-generated topics", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(clusters)], },] if scaffold_method == "personal_cluster": cluster_model = user_models[0] personal_cluster_file = f"./data/personal_cluster_dfs/{cluster_model}.pkl" if os.path.isfile(personal_cluster_file) and cluster_model != "": print("audit_settings", personal_cluster_file, cluster_model) topics_under_top, topics_over_top = utils.get_personal_clusters(cluster_model) pers_cluster = topics_under_top + topics_over_top pers_cluster_options = { "label": "Personalized clusters", "options": [{"value": i, "text": cluster} for i, cluster in enumerate(pers_cluster)], } clusters_options.insert(0, pers_cluster_options) clusters_for_tuning = utils.get_large_clusters(min_n=150) clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element context = { "personalized_models": user_models, "personalized_model_grp": grp_models, "perf_metrics": ["Average rating difference", "Mean Absolute Error (MAE)", "Root Mean Squared Error (RMSE)", "Mean Squared Error (MSE)"], "breakdown_categories": ['Topic', 'Toxicity Category', 'Toxicity Severity'], "clusters": clusters_options, "clusters_for_tuning": clusters_for_tuning_options, } return json.dumps(context) ######################################## # ROUTE: /GET_USERS @app.route("/get_users") def get_users(): # Fetch page content with open(f"./data/users_to_models.pkl", "rb") as f: users_to_models = pickle.load(f) users = list(users_to_models.keys()) context = { "users": users, } return json.dumps(context) ######################################## # ROUTE: /GET_AUDIT @app.route("/get_audit") def get_audit(): pers_model = request.args.get("pers_model") perf_metric = request.args.get("perf_metric") breakdown_axis = request.args.get("breakdown_axis") breakdown_sort = request.args.get("breakdown_sort") n_topics = int(request.args.get("n_topics")) error_type = request.args.get("error_type") cur_user = request.args.get("cur_user") topic_vis_method = request.args.get("topic_vis_method") if topic_vis_method == "null": topic_vis_method = "median" if breakdown_sort == "difference": sort_class_plot = True elif breakdown_sort == "default": sort_class_plot = False else: raise Exception("Invalid breakdown_sort value") overall_perf = utils.show_overall_perf( variant=pers_model, error_type=error_type, cur_user=cur_user, breakdown_axis=breakdown_axis, topic_vis_method=topic_vis_method, ) results = { "overall_perf": overall_perf, } return json.dumps(results) ######################################## # ROUTE: /GET_CLUSTER_RESULTS @app.route("/get_cluster_results") def get_cluster_results(): pers_model = request.args.get("pers_model") n_examples = int(request.args.get("n_examples")) cluster = request.args.get("cluster") example_sort = request.args.get("example_sort") comparison_group = request.args.get("comparison_group") topic_df_ids = request.args.getlist("topic_df_ids") topic_df_ids = [int(val) for val in topic_df_ids[0].split(",") if val != ""] search_type = request.args.get("search_type") keyword = request.args.get("keyword") n_neighbors = request.args.get("n_neighbors") if n_neighbors != "null": n_neighbors = int(n_neighbors) neighbor_threshold = 0.6 error_type = request.args.get("error_type") use_model = request.args.get("use_model") == "true" scaffold_method = request.args.get("scaffold_method") # If user has a tuned model for this cluster, use that cluster_model_file = f"./data/trained_models/{pers_model}_{cluster}.pkl" if os.path.isfile(cluster_model_file): pers_model = f"{pers_model}_{cluster}" print(f"get_cluster_results using model {pers_model}") other_ids = [] perf_metric = "avg_diff" sort_ascending = True if example_sort == "ascending" else False topic_df = None personal_cluster_file = f"./data/personal_cluster_dfs/{pers_model}.pkl" if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)): # Handle personal clusters with open(personal_cluster_file, "rb") as f: topic_df = pickle.load(f) topic_df = topic_df[(topic_df["topic"] == cluster)] else: # Regular handling with open(f"data/preds_dfs/{pers_model}.pkl", "rb") as f: topic_df = pickle.load(f) if search_type == "cluster": # Display examples with comment, your pred, and other users' pred topic_df = topic_df[(topic_df["topic"] == cluster) | (topic_df["item_id"].isin(topic_df_ids))] elif search_type == "neighbors": neighbor_ids = utils.get_match(topic_df_ids, K=n_neighbors, threshold=neighbor_threshold, debug=False) topic_df = topic_df[(topic_df["item_id"].isin(neighbor_ids)) | (topic_df["item_id"].isin(topic_df_ids))] elif search_type == "keyword": topic_df = topic_df[(topic_df["comment"].str.contains(keyword, case=False, regex=False)) | (topic_df["item_id"].isin(topic_df_ids))] topic_df = topic_df.drop_duplicates() print("len topic_df", len(topic_df)) # Handle empty results if len(topic_df) == 0: results = { "user_perf_rounded": None, "user_direction": None, "other_perf_rounded": None, "other_direction": None, "n_other_users": None, "cluster_examples": None, "odds_ratio": None, "odds_ratio_explanation": None, "topic_df_ids": [], "cluster_overview_plot_json": None, "cluster_comments": None, } return results topic_df_ids = topic_df["item_id"].unique().tolist() if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)): cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df, error_type=error_type, n_comments=500) else: # Regular cluster_overview_plot_json, sampled_df = utils.get_cluster_overview_plot(topic_df, error_type=error_type, use_model=use_model) cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, num_examples=n_examples, use_model=use_model) # New version of cluster comment table results = { "topic_df_ids": topic_df_ids, "cluster_overview_plot_json": json.loads(cluster_overview_plot_json), "cluster_comments": cluster_comments, } return json.dumps(results) ######################################## # ROUTE: /GET_GROUP_SIZE @app.route("/get_group_size") def get_group_size(): # Fetch info for initial labeling component sel_gender = request.args.get("sel_gender") sel_pol = request.args.get("sel_pol") sel_relig = request.args.get("sel_relig") sel_race = request.args.get("sel_race") sel_lgbtq = request.args.get("sel_lgbtq") if sel_race != "": sel_race = sel_race.split(",") _, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq) context = { "group_size": group_size, } return json.dumps(context) ######################################## # ROUTE: /GET_GROUP_MODEL @app.route("/get_group_model") def get_group_model(): # Fetch info for initial labeling component model_name = request.args.get("model_name") user = request.args.get("user") sel_gender = request.args.get("sel_gender") sel_pol = request.args.get("sel_pol") sel_relig = request.args.get("sel_relig") sel_lgbtq = request.args.get("sel_lgbtq") sel_race_orig = request.args.get("sel_race") if sel_race_orig != "": sel_race = sel_race_orig.split(",") else: sel_race = "" start = time.time() grp_df, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq) grp_ids = grp_df["worker_id"].tolist() ratings_grp = utils.get_grp_model_labels( comments_df=comments_grouped_full_topic_cat, n_label_per_bin=BIN_DISTRIB, score_bins=SCORE_BINS, grp_ids=grp_ids, ) # print("ratings_grp", ratings_grp) # Modify model name model_name = f"{model_name}_group_gender{sel_gender}_relig{sel_relig}_pol{sel_pol}_race{sel_race_orig}_lgbtq_{sel_lgbtq}" label_dir = f"./data/labels/{model_name}" # Create directory for labels if it doesn't yet exist if not os.path.isdir(label_dir): os.mkdir(label_dir) last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))]) # Train group model mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings_grp, user) duration = time.time() - start print("Time to train/cache:", duration) context = { "group_size": group_size, "mae": mae, } return json.dumps(context) ######################################## # ROUTE: /GET_LABELING @app.route("/get_labeling") def get_labeling(): # Fetch info for initial labeling component user = request.args.get("user") clusters_for_tuning = utils.get_large_clusters(min_n=150) clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element # model_name_suggestion = f"model_{int(time.time())}" model_name_suggestion = f"model_{user}" context = { "personalized_models": utils.get_all_model_names(user), "model_name_suggestion": model_name_suggestion, "clusters_for_tuning": clusters_for_tuning_options, } return json.dumps(context) ######################################## # ROUTE: /GET_COMMENTS_TO_LABEL N_LABEL_PER_BIN = 8 # 8 * 5 = 40 comments BIN_DISTRIB = [4, 8, 16, 8, 4] SCORE_BINS = [(0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 4.01)] @app.route("/get_comments_to_label") def get_comments_to_label(): n = int(request.args.get("n")) # Fetch examples to label to_label_ids = utils.create_example_sets( comments_df=comments_grouped_full_topic_cat, n_label_per_bin=BIN_DISTRIB, score_bins=SCORE_BINS, keyword=None ) random.shuffle(to_label_ids) # randomize to not prime users to_label_ids = to_label_ids[:n] ids_to_comments = utils.get_ids_to_comments() to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids] context = { "to_label": to_label, } return json.dumps(context) ######################################## # ROUTE: /GET_COMMENTS_TO_LABEL_TOPIC N_LABEL_PER_BIN_TOPIC = 2 # 2 * 5 = 10 comments @app.route("/get_comments_to_label_topic") def get_comments_to_label_topic(): # Fetch examples to label topic = request.args.get("topic") to_label_ids = utils.create_example_sets( comments_df=comments_grouped_full_topic_cat, # n_label_per_bin=N_LABEL_PER_BIN_TOPIC, n_label_per_bin=BIN_DISTRIB, score_bins=SCORE_BINS, keyword=None, topic=topic, ) random.shuffle(to_label_ids) # randomize to not prime users ids_to_comments = utils.get_ids_to_comments() to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids] context = { "to_label": to_label, } return json.dumps(context) ######################################## # ROUTE: /GET_PERSONALIZED_MODEL @app.route("/get_personalized_model") def get_personalized_model(): model_name = request.args.get("model_name") ratings_json = request.args.get("ratings") mode = request.args.get("mode") user = request.args.get("user") ratings = json.loads(ratings_json) print(ratings) start = time.time() label_dir = f"./data/labels/{model_name}" # Create directory for labels if it doesn't yet exist if not os.path.isdir(label_dir): os.mkdir(label_dir) last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))]) # Handle existing or new model cases if mode == "view": # Fetch prior model performance if model_name not in utils.get_all_model_names(): raise Exception(f"Model {model_name} does not exist") else: mae, mse, rmse, avg_diff, ratings_prev = utils.fetch_existing_data(model_name, last_label_i) elif mode == "train": # Train model and cache predictions using new labels print("get_personalized_model train") mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user) duration = time.time() - start print("Time to train/cache:", duration) perf_plot, mae_status = utils.plot_train_perf_results(model_name, mae) perf_plot_json = perf_plot.to_json() def round_metric(x): return np.round(abs(x), 3) results = { "model_name": model_name, "mae": round_metric(mae), "mae_status": mae_status, "mse": round_metric(mse), "rmse": round_metric(rmse), "avg_diff": round_metric(avg_diff), "duration": duration, "ratings_prev": ratings_prev, "perf_plot_json": json.loads(perf_plot_json), } return json.dumps(results) ######################################## # ROUTE: /GET_PERSONALIZED_MODEL_TOPIC @app.route("/get_personalized_model_topic") def get_personalized_model_topic(): model_name = request.args.get("model_name") ratings_json = request.args.get("ratings") user = request.args.get("user") ratings = json.loads(ratings_json) topic = request.args.get("topic") print(ratings) start = time.time() # Modify model name model_name = f"{model_name}_{topic}" label_dir = f"./data/labels/{model_name}" # Create directory for labels if it doesn't yet exist if not os.path.isdir(label_dir): os.mkdir(label_dir) last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))]) # Handle existing or new model cases # Train model and cache predictions using new labels print("get_personalized_model_topic train") mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user, topic=topic) duration = time.time() - start print("Time to train/cache:", duration) def round_metric(x): return np.round(abs(x), 3) results = { "success": "success", "ratings_prev": ratings_prev, "new_model_name": model_name, } return json.dumps(results) ######################################## # ROUTE: /GET_REPORTS @app.route("/get_reports") def get_reports(): cur_user = request.args.get("cur_user") scaffold_method = request.args.get("scaffold_method") model = request.args.get("model") topic_vis_method = request.args.get("topic_vis_method") if topic_vis_method == "null": topic_vis_method = "fp_fn" # Load reports for current user from stored files report_dir = f"./data/user_reports" user_file = os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl") if not os.path.isfile(user_file): if scaffold_method == "fixed": reports = get_fixed_scaffold() elif (scaffold_method == "personal" or scaffold_method == "personal_group" or scaffold_method == "personal_test"): reports = get_personal_scaffold(model, topic_vis_method) elif (scaffold_method == "personal_cluster"): reports = get_personal_cluster_scaffold(model) elif scaffold_method == "prompts": reports = get_prompts_scaffold() elif scaffold_method == "tutorial": reports = get_tutorial_scaffold() else: # Prepare empty report reports = [ { "title": "", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, } ] else: # Load from pickle file with open(user_file, "rb") as f: reports = pickle.load(f) results = { "reports": reports, } return json.dumps(results) def get_fixed_scaffold(): return [ { "title": "Topic: 6_jews_jew_jewish_rabbi", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 73_troll_trolls_trolling_spammers", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 66_mexicans_mexico_mexican_spanish", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 89_cowards_coward_cowardly_brave", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Topic: 63_disgusting_gross_toxic_thicc", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, ] def get_empty_report(title, error_type): return { "title": f"Topic: {title}", "error_type": error_type, "evidence": [], "text_entry": "", "complete_status": False, } def get_tutorial_scaffold(): return [ { "title": "Topic: 79_idiot_dumb_stupid_dumber", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, ] def get_personal_cluster_scaffold(model): topics_under_top, topics_over_top = utils.get_personal_clusters(model) report_under = [get_empty_report(topic, "System is under-sensitive") for topic in topics_under_top] report_over = [get_empty_report(topic, "System is over-sensitive") for topic in topics_over_top] reports = (report_under + report_over) random.shuffle(reports) return reports def get_topic_errors(df, topic_vis_method, threshold=2): topics = df["topic_"].unique().tolist() topic_errors = {} for topic in topics: t_df = df[df["topic_"] == topic] y_true = t_df["pred"].to_numpy() y_pred = t_df["rating"].to_numpy() if topic_vis_method == "mae": t_err = mean_absolute_error(y_true, y_pred) elif topic_vis_method == "mse": t_err = mean_squared_error(y_true, y_pred) elif topic_vis_method == "avg_diff": t_err = np.mean(y_true - y_pred) elif topic_vis_method == "fp_proportion": y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()] y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()] try: tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() except: tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0 total = float(len(y_true)) t_err = fp / total elif topic_vis_method == "fn_proportion": y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()] y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()] try: tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() except: tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0 total = float(len(y_true)) t_err = fn / total topic_errors[topic] = t_err return topic_errors def get_personal_scaffold(model, topic_vis_method, n_topics=200, n=5): threshold = utils.get_toxic_threshold() # Get topics with greatest amount of error with open(f"./data/preds_dfs/{model}.pkl", "rb") as f: preds_df = pickle.load(f) preds_df_mod = preds_df.merge(utils.get_comments_grouped_full_topic_cat(), on="item_id", how="left", suffixes=('_', '_avg')) preds_df_mod = preds_df_mod[preds_df_mod["user_id"] == "A"].sort_values(by=["item_id"]).reset_index() preds_df_mod = preds_df_mod[preds_df_mod["topic_id_"] < n_topics] if topic_vis_method == "median": df = preds_df_mod.groupby(["topic_", "user_id"]).median().reset_index() elif topic_vis_method == "mean": df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index() elif topic_vis_method == "fp_fn": for error_type in ["fn_proportion", "fp_proportion"]: topic_errors = get_topic_errors(preds_df_mod, error_type) preds_df_mod[error_type] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()] df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index() else: # Get error for each topic topic_errors = get_topic_errors(preds_df_mod, topic_vis_method) preds_df_mod[topic_vis_method] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()] df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index() # Get system error df = df[(df["topic_"] != "53_maiareficco_kallystas_dyisisitmanila_tractorsazi") & (df["topic_"] != "79_idiot_dumb_stupid_dumber")] if topic_vis_method == "median" or topic_vis_method == "mean": df["error_magnitude"] = [utils.get_error_magnitude(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] df_under = df[df["error_type"] == "System is under-sensitive"] df_under = df_under.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first report_under = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_under.iterrows()] df_over = df[df["error_type"] == "System is over-sensitive"] df_over = df_over.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first report_over = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_over.iterrows()] # Set up reports # return [get_empty_report(row["topic_"], row["error_type"]) for index, row in df.iterrows()] reports = (report_under + report_over) random.shuffle(reports) elif topic_vis_method == "fp_fn": df_under = df.sort_values(by=["fn_proportion"], ascending=False).head(n) df_under = df_under[df_under["fn_proportion"] > 0] report_under = [get_empty_report(row["topic_"], "System is under-sensitive") for _, row in df_under.iterrows()] df_over = df.sort_values(by=["fp_proportion"], ascending=False).head(n) df_over = df_over[df_over["fp_proportion"] > 0] report_over = [get_empty_report(row["topic_"], "System is over-sensitive") for _, row in df_over.iterrows()] reports = (report_under + report_over) random.shuffle(reports) else: df = df.sort_values(by=[topic_vis_method], ascending=False).head(n * 2) df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] reports = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df.iterrows()] return reports def get_prompts_scaffold(): return [ { "title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as toxic?", "error_type": "System is over-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as non-toxic?", "error_type": "System is under-sensitive", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there certain ways that your community tends to be targeted by outsiders?", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there other communities whose content should be very similar to your community's? Verify that this content is treated similarly by the system.", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, }, { "title": "Are there ways that you've seen individuals in your community actively try to thwart the rules of automated content moderation systems? Check whether these strategies work here.", "error_type": "", "evidence": [], "text_entry": "", "complete_status": False, }, ] ######################################## # ROUTE: /SAVE_REPORTS @app.route("/save_reports") def save_reports(): cur_user = request.args.get("cur_user") reports_json = request.args.get("reports") reports = json.loads(reports_json) scaffold_method = request.args.get("scaffold_method") # Save reports for current user to stored files report_dir = f"./data/user_reports" # Save to pickle file with open(os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl"), "wb") as f: pickle.dump(reports, f) results = { "status": "success", } return json.dumps(results) ######################################## # ROUTE: /GET_EXPLORE_EXAMPLES @app.route("/get_explore_examples") def get_explore_examples(): threshold = utils.get_toxic_threshold() n_examples = int(request.args.get("n_examples")) # Get sample of examples df = utils.get_comments_grouped_full_topic_cat().sample(n=n_examples) df["system_decision"] = [utils.get_decision(rating, threshold) for rating in df["rating"].tolist()] df["system_color"] = [utils.get_user_color(sys, threshold) for sys in df["rating"].tolist()] # get cell colors ex_json = df.to_json(orient="records") results = { "examples": ex_json, } return json.dumps(results) ######################################## # ROUTE: /GET_RESULTS @app.route("/get_results") def get_results(): users = request.args.get("users") if users != "": users = users.split(",") # print("users", users) IGNORE_LIST = ["DemoUser"] report_dir = f"./data/user_reports" # For each user, get personal and prompt results # Get links to label pages and audit pages results = [] for user in users: if user not in IGNORE_LIST: user_results = {} user_results["user"] = user for scaffold_method in ["personal", "personal_group", "prompts"]: # Get results user_file = os.path.join(report_dir, f"{user}_{scaffold_method}.pkl") if os.path.isfile(user_file): with open(user_file, "rb") as f: user_results[scaffold_method] = pickle.load(f) results.append(user_results) # print("results", results) results = { "results": results, } return json.dumps(results) if __name__ == "__main__": app.run(debug=True, port=5001)