from HebEMO import HebEMO from transformers import pipeline import streamlit as st import matplotlib.pyplot as plt import pandas as pd from spider_plot import spider_plot # @st.cache HebEMO_model = HebEMO() x = st.slider("Select a value") st.write(x, "squared is", x * x) st.title("Find sentiment") st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.") sent = st.text_area("Text", "write here", height = 20) # interact(HebEMO_model.hebemo, text='החיים יפים ומאושרי', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),) hebEMO_df = HebEMO_model.hebemo(sent, read_lines=True plot=False) hebEMO = pd.DataFrame() for emo in hebEMO_df.columns[1::2]: hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo])) st.write (hebEMO) plot= st.checkbox('Plot?') if plot: ax = spider_plot(hebEMO) st.pyplot(ax) # fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable", # color="variable", # template="ggplot2", # ) # st.plotly_chart(fig, use_container_width=True)