import gradio as gr import cv2 import requests import os from ultralytics import YOLO model = YOLO('best_gd.pt') image_paths = ['pothole_example.jpg', 'pothole_screenshot.png'] def show_preds_image(image): # Save the uploaded image temporarily image_path = "uploaded_image.jpg" cv2.imwrite(image_path, image[:, :, ::-1]) # Convert BGR to RGB and save the image image = cv2.imread(image_path) outputs = model.predict(source=image_path) #print("output>>>>>>>>>>>>>>>>>>>>>>>>", outputs) results = outputs[0].boxes.xyxy.cpu().numpy() for det in results: x1, y1, x2, y2 = det[:4] label = "" cv2.rectangle( image, (int(x1), int(y1)), (int(x2), int(y2)), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA, ) cv2.putText( image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2, cv2.LINE_AA, ) os.remove(image_path) # Remove the temporary image file return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.inputs.Image(label="Upload Image"), ] outputs_image = [ gr.outputs.Image(type="numpy"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Animal detector", examples=[], cache_examples=False, ) interface_image.launch()