from pathlib import PurePath from typing import Sequence import torch from torch import nn import yaml class InvalidModelError(RuntimeError): """Exception raised for any model-related error (creation, loading)""" _WEIGHTS_URL = { 'parseq-tiny': 'https://github.com/baudm/parseq/releases/download/v1.0.0/parseq_tiny-e7a21b54.pt', 'parseq': 'https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', 'abinet': 'https://github.com/baudm/parseq/releases/download/v1.0.0/abinet-1d1e373e.pt', 'trba': 'https://github.com/baudm/parseq/releases/download/v1.0.0/trba-cfaed284.pt', 'vitstr': 'https://github.com/baudm/parseq/releases/download/v1.0.0/vitstr-26d0fcf4.pt', 'crnn': 'https://github.com/baudm/parseq/releases/download/v1.0.0/crnn-679d0e31.pt', } def _get_config(experiment: str, **kwargs): """Emulates hydra config resolution""" root = PurePath(__file__).parents[2] with open(root / 'configs/main.yaml', 'r') as f: config = yaml.load(f, yaml.Loader)['model'] with open(root / f'configs/charset/94_full.yaml', 'r') as f: config.update(yaml.load(f, yaml.Loader)['model']) with open(root / f'configs/experiment/{experiment}.yaml', 'r') as f: exp = yaml.load(f, yaml.Loader) # Apply base model config model = exp['defaults'][0]['override /model'] with open(root / f'configs/model/{model}.yaml', 'r') as f: config.update(yaml.load(f, yaml.Loader)) # Apply experiment config if 'model' in exp: config.update(exp['model']) config.update(kwargs) # Workaround for now: manually cast the lr to the correct type. config['lr'] = float(config['lr']) return config def _get_model_class(key): if 'abinet' in key: from .abinet.system import ABINet as ModelClass elif 'crnn' in key: from .crnn.system import CRNN as ModelClass elif 'parseq' in key: from .parseq.system import PARSeq as ModelClass elif 'trba' in key: from .trba.system import TRBA as ModelClass elif 'trbc' in key: from .trba.system import TRBC as ModelClass elif 'vitstr' in key: from .vitstr.system import ViTSTR as ModelClass else: raise InvalidModelError("Unable to find model class for '{}'".format(key)) return ModelClass def get_pretrained_weights(experiment): try: url = _WEIGHTS_URL[experiment] except KeyError: raise InvalidModelError("No pretrained weights found for '{}'".format(experiment)) from None return torch.hub.load_state_dict_from_url(url=url, map_location='cpu', check_hash=True) def create_model(experiment: str, pretrained: bool = False, **kwargs): try: config = _get_config(experiment, **kwargs) except FileNotFoundError: raise InvalidModelError("No configuration found for '{}'".format(experiment)) from None ModelClass = _get_model_class(experiment) model = ModelClass(**config) if pretrained: model.load_state_dict(get_pretrained_weights(experiment)) return model def load_from_checkpoint(checkpoint_path: str, **kwargs): if checkpoint_path.startswith('pretrained='): model_id = checkpoint_path.split('=', maxsplit=1)[1] model = create_model(model_id, True, **kwargs) else: ModelClass = _get_model_class(checkpoint_path) model = ModelClass.load_from_checkpoint(checkpoint_path, **kwargs) return model def parse_model_args(args): kwargs = {} arg_types = {t.__name__: t for t in [int, float, str]} arg_types['bool'] = lambda v: v.lower() == 'true' # special handling for bool for arg in args: name, value = arg.split('=', maxsplit=1) name, arg_type = name.split(':', maxsplit=1) kwargs[name] = arg_types[arg_type](value) return kwargs def init_weights(module: nn.Module, name: str = '', exclude: Sequence[str] = ()): """Initialize the weights using the typical initialization schemes used in SOTA models.""" if any(map(name.startswith, exclude)): return if isinstance(module, nn.Linear): nn.init.trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.trunc_normal_(module.weight, std=.02) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias)