# Scene Text Recognition Model Hub # Copyright 2022 Darwin Bautista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Optional, Tuple, List import pytorch_lightning as pl import torch import torch.nn.functional as F from nltk import edit_distance from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT from timm.optim import create_optimizer_v2 from torch import Tensor from torch.optim import Optimizer from torch.optim.lr_scheduler import OneCycleLR from strhub.data.utils import CharsetAdapter, CTCTokenizer, Tokenizer, BaseTokenizer @dataclass class BatchResult: num_samples: int correct: int ned: float confidence: float label_length: int loss: Tensor loss_numel: int class BaseSystem(pl.LightningModule, ABC): def __init__(self, tokenizer: BaseTokenizer, charset_test: str, batch_size: int, lr: float, warmup_pct: float, weight_decay: float) -> None: super().__init__() self.tokenizer = tokenizer self.charset_adapter = CharsetAdapter(charset_test) self.batch_size = batch_size self.lr = lr self.warmup_pct = warmup_pct self.weight_decay = weight_decay @abstractmethod def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor: """Inference Args: images: Batch of images. Shape: N, Ch, H, W max_length: Max sequence length of the output. If None, will use default. Returns: logits: N, L, C (L = sequence length, C = number of classes, typically len(charset_train) + num specials) """ raise NotImplementedError @abstractmethod def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]: """Like forward(), but also computes the loss (calls forward() internally). Args: images: Batch of images. Shape: N, Ch, H, W labels: Text labels of the images Returns: logits: N, L, C (L = sequence length, C = number of classes, typically len(charset_train) + num specials) loss: mean loss for the batch loss_numel: number of elements the loss was calculated from """ raise NotImplementedError def configure_optimizers(self): agb = self.trainer.accumulate_grad_batches # Linear scaling so that the effective learning rate is constant regardless of the number of GPUs used with DDP. lr_scale = agb * math.sqrt(self.trainer.num_devices) * self.batch_size / 256. lr = lr_scale * self.lr optim = create_optimizer_v2(self, 'adamw', lr, self.weight_decay) sched = OneCycleLR(optim, lr, self.trainer.estimated_stepping_batches, pct_start=self.warmup_pct, cycle_momentum=False) return {'optimizer': optim, 'lr_scheduler': {'scheduler': sched, 'interval': 'step'}} def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int): optimizer.zero_grad(set_to_none=True) def _eval_step(self, batch, validation: bool) -> Optional[STEP_OUTPUT]: images, labels = batch correct = 0 total = 0 ned = 0 confidence = 0 label_length = 0 if validation: logits, loss, loss_numel = self.forward_logits_loss(images, labels) else: # At test-time, we shouldn't specify a max_label_length because the test-time charset used # might be different from the train-time charset. max_label_length in eval_logits_loss() is computed # based on the transformed label, which could be wrong if the actual gt label contains characters existing # in the train-time charset but not in the test-time charset. For example, "aishahaleyes.blogspot.com" # is exactly 25 characters, but if processed by CharsetAdapter for the 36-char set, it becomes 23 characters # long only, which sets max_label_length = 23. This will cause the model prediction to be truncated. logits = self.forward(images) loss = loss_numel = None # Only used for validation; not needed at test-time. probs = logits.softmax(-1) preds, probs = self.tokenizer.decode(probs) for pred, prob, gt in zip(preds, probs, labels): confidence += prob.prod().item() pred = self.charset_adapter(pred) # Follow ICDAR 2019 definition of N.E.D. ned += edit_distance(pred, gt) / max(len(pred), len(gt)) if pred == gt: correct += 1 total += 1 label_length += len(pred) return dict(output=BatchResult(total, correct, ned, confidence, label_length, loss, loss_numel)) @staticmethod def _aggregate_results(outputs: EPOCH_OUTPUT) -> Tuple[float, float, float]: if not outputs: return 0., 0., 0. total_loss = 0 total_loss_numel = 0 total_n_correct = 0 total_norm_ED = 0 total_size = 0 for result in outputs: result = result['output'] total_loss += result.loss_numel * result.loss total_loss_numel += result.loss_numel total_n_correct += result.correct total_norm_ED += result.ned total_size += result.num_samples acc = total_n_correct / total_size ned = (1 - total_norm_ED / total_size) loss = total_loss / total_loss_numel return acc, ned, loss def validation_step(self, batch, batch_idx) -> Optional[STEP_OUTPUT]: return self._eval_step(batch, True) def validation_epoch_end(self, outputs: EPOCH_OUTPUT) -> None: acc, ned, loss = self._aggregate_results(outputs) self.log('val_accuracy', 100 * acc, sync_dist=True) self.log('val_NED', 100 * ned, sync_dist=True) self.log('val_loss', loss, sync_dist=True) self.log('hp_metric', acc, sync_dist=True) def test_step(self, batch, batch_idx) -> Optional[STEP_OUTPUT]: return self._eval_step(batch, False) class CrossEntropySystem(BaseSystem): def __init__(self, charset_train: str, charset_test: str, batch_size: int, lr: float, warmup_pct: float, weight_decay: float) -> None: tokenizer = Tokenizer(charset_train) super().__init__(tokenizer, charset_test, batch_size, lr, warmup_pct, weight_decay) self.bos_id = tokenizer.bos_id self.eos_id = tokenizer.eos_id self.pad_id = tokenizer.pad_id def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]: targets = self.tokenizer.encode(labels, self.device) targets = targets[:, 1:] # Discard max_len = targets.shape[1] - 1 # exclude from count logits = self.forward(images, max_len) loss = F.cross_entropy(logits.flatten(end_dim=1), targets.flatten(), ignore_index=self.pad_id) loss_numel = (targets != self.pad_id).sum() return logits, loss, loss_numel class CTCSystem(BaseSystem): def __init__(self, charset_train: str, charset_test: str, batch_size: int, lr: float, warmup_pct: float, weight_decay: float) -> None: tokenizer = CTCTokenizer(charset_train) super().__init__(tokenizer, charset_test, batch_size, lr, warmup_pct, weight_decay) self.blank_id = tokenizer.blank_id def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]: targets = self.tokenizer.encode(labels, self.device) logits = self.forward(images) log_probs = logits.log_softmax(-1).transpose(0, 1) # swap batch and seq. dims T, N, _ = log_probs.shape input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long, device=self.device) target_lengths = torch.as_tensor(list(map(len, labels)), dtype=torch.long, device=self.device) loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=self.blank_id, zero_infinity=True) return logits, loss, N